微分方程参数拟合-过拟合现象及处理

该博客讨论了微分方程参数拟合时遇到的过拟合现象,通过分析发现参数a、b、d存在相互依赖关系,导致无穷多最优解。为解决此问题,提出了简化参数为ab、ad、p1的方案,并提供了使用Lu脚本进行计算和绘图的结果。
摘要由CSDN通过智能技术生成

原问题地址:matlab 分式拟合,matlab 微分方程组的参数拟合_催眠神兔的博客-CSDN博客

微分方程式:

x'=dx/dt=a*0.0321*(b-x)-d*x-dy/dt,

y'= dy/dt=0.25*p1*exp(-p1*t)*x ,

四个待求参数:a、b、d、p1

t、x、y数据见下面:

//0 0 0  //这是初值

0,0,0,

0.1,0.486966799,0.048018378,

0.167,1.6657,0.05823,

0.2,0.860306078,0.060834243,

0.3,1.156255213,0.064254733,

0.4,1.390856542,0.065167644,

0.5,1.67518,0.06638,

0.6,1.724247244,0.065476325,

0.7,1.841108525,0.065493681,

0.8,1.93374543,0.065498314,

0.9,2.007179471,0.06549955,

1,1.92438,0.05641,

1.1,2.111536196,0.065499968,

1.2,2.148115682,0.065499991,

1.3,2.177112544,0.065499998,

1.4,2.200098596,0.065499999,

1.5,2.218319829,0.0655,

1.6,2.232763952,0.0655,

1.7,2.244213928,0.0655,

1.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值