格密码的基础概念(2)

目录

前言

一. BLICHFELD理论

二. 闵可夫斯基凸体定理

三. n维球体体积结论

四. 闵可夫斯基第一定理

五. 闵可夫斯基第二定理

结论

推荐阅读


前言

本节主要讨论闵可夫斯基提出的关于连续最小值的上界问题。为了简化分析过程,仅讨论满秩的格,将结果类推到非满秩的格也是同理可得。

推荐阅读:

格密码的基础概念(1)-CSDN博客

一. BLICHFELD理论

对于任意m维满秩格\Lambda \in R^n和可测量的集合S\in R^n,如果满足:

vol(S)>det(\Lambda)

简单来说就是S区域的面积大于格基本区的面积。那么必定存在z_1,z_2\in S,满足z_1-z_2\in \Lambda。如下图所示:

证明:

将S平移到基本区中,若:

vol(S)>det(\Lambda)

则说明平移后的区域必然存在重合点。具体分析思路如下:

假定B为\Lambda的格基,让x遍历所有格点\Lambda,如下集合构成n维空间R^n的一部分:

x+P(B):=\lbrace x+y\lvert y\in P(B)\rbrace

其中P(B)代表格的基本区。

每个基本区都会有重叠的部分,定义交集如下:

S_x=S\cap(x+P(B))

由此,原集合就被分成了各个小块,如下:

S=\cup _{x\in \Lambda}S_x

体积也对应分成很多小块:

vol(S)=\sum_{x\in\Lambda}vol(S_x)

将每个小集合里面的格点去掉:

\hat{S_x}=S_x-x

单个点对体积是无影响的,所以以下结论依旧成立:

\hat{S_x}\subseteq P(B)

以及:

vol(\hat{S_x})=vol(S_x)

由此可得:

\sum_{x\in\Lambda}vol(\hat{S_x})=\sum_{x\in\Lambda}vol(S_x)=vol(S)>vol(P(B))

由此,一定存在一些格点x,y\in \Lambda, x\not=y,保证:

\hat{S_x}\cap\hat{S_y}\not=0

用z代表\hat{S_x}\cap\hat{S_y}中的点,所以z+x一定包含在S_x\subseteq S,z+y包含在S_y\subseteq S。所以(z+x)-(z+y)=x-y也包含在\Lambda中。

定理证明完毕。由此定理可以类推出接下来要讲的闵可夫斯基凸体定理。

闵可夫斯基凸体定理表明一个足够大的中心对称的凸体一定包含一个非零的格点。中心对称的凸体在格密码中主要有两个应用:

  1. 如果S是中心对称的,当x\in S时,-x\in S
  2. 如果是个凸体,当x,y \in S\lambda \in [0,1],不难推出\lambda x+(1-\lambda)y\in S

中心对称和凸体的前提条件,去掉任何一个,闵可夫斯基凸体定理就会不成立。具体分析我们来看第二个定理。

二. 闵可夫斯基凸体定理

对于任意满秩格\Lambda \in R^n和中心对称凸集S\in R^n,若vol(S)>2^ndet(\Lambda),则S包含非零格点。

证明:

首先将原来的中心对称凸集S\in R^n长度缩短一半,如下:

\hat{S}=\frac{1}{2}S=\lbrace x|2x\in S\rbrace

每个维度的长度都被缩短了一半,整个n维,所以可得:

vol(\hat{S})=2^{-n}vol(S)>det\Lambda

根据BLICHFELD理论,一定存在两个点z_1,z_2\in\hat{S},满足z_1-z_2\in\Lambda且这两点都不是原点。根据我们的设定:

2z_1,2z_2\in S

又因为S是中心对称的,所以-2z_2\in S。另外由于S是凸体,\frac{2z_1-2z_2}{2}=z_1-z_2也在空间S中。

定理证明完毕。

来看一个直观的图形:

此证明的主体思想:将S等比例缩小一半。

三. n维球体体积结论

vol(B(0,r))\geq{(\frac{2r}{\sqrt{2}})}^n

证明:

vol(B(0,r))代表一个球心在原点,半径为r的n维球体的体积。

此球内包含一个长度为\frac{2r}{\sqrt{n}}的立方体。以二维为例,如下图:

所以可得:

\lbrace x\in R^n|\forall i,|x_i|<\frac{r}{\sqrt{n}}\rbrace\subseteq B(0,r)

{(\frac{2r}{\sqrt{2}})}^n代表立方体的体积。易得球的体积大于立方体的体积。

证明完毕。

到此铺垫完毕,接下来我们可引出格最短向量的上界问题。

四. 闵可夫斯基第一定理

对于任意满秩格\Lambda\in R^n,其最短向量长度满足如下:

\lambda_1(\Lambda)\leq\sqrt{n}{(det\Lambda)}^{\frac{1}{n}}

证明:根据格内最短向量的定义(类似SVP问题),球B(0,\lambda_1(\Lambda))内不包含非零格点,根据以上分析可得:

{(\frac{2\lambda_1(\Lambda)}{\sqrt{n}})}^n\leq vol(B(0,\lambda_1(\Lambda)))\leq2^n det(\Lambda)

整理此式子不难得出\lambda_1(\Lambda)的上界。

主题思想:B(0,\lambda_1(\Lambda))不含任何非零格点+闵可夫斯基凸体定理。

对于闵可夫斯基第一定理的理解与分析:

定理中{(det\Lambda)}^\frac{1}{n}看起来可能有些奇怪,实际上有它本身的意义:能够与空间维度联系起来。例如,将格c\Lambda看成原格\Lambda扩大c倍产生。所以易得:

\lambda_1(c\Lambda)=c\lambda_1(\Lambda)

另一方面,在n维度上:

det(c\Lambda)=c^ndet(\Lambda)

等式右边正如我们所理解的那样扩大c倍。由此得出结论,任意秩为n,行列式为1的格,最短向量的上界为\sqrt{n}

这个上界可以进一步缩小吗?答案是可以的!

举个例子,取一个很小的\epsilon>0,考虑一组格基{(\epsilon,0)}^T,{(0,\frac{1}{\epsilon})},此格的行列式为1,依据闵可夫斯基第一定理可得上界为\sqrt{2},然而实际最短向量为\epsilon。实际上,已经有研究将\sqrt{n}的上界缩小到c\sqrt{n}, c<1。此处讨论的二维可以拓展到多维。

闵可夫斯基第一定理研究的是最短向量,也就是第一个连续最小值\lambda_1。加强版的连续最小值问题可以由闵可夫斯基第二定理说明,以下研究的不只是\lambda_1,考虑的是\lambda_i的几何平均数。

五. 闵可夫斯基第二定理

对于任意满秩格\Lambda\in R^n,其连续最小值最小值满足:

(\prod_{i=1}^n\lambda_i(\Lambda))^{1/n}\leq\sqrt n(det \Lambda)^{1/n}

证明:x_1,\ldots,x_n\in \Lambda为连续最小值代表的向量,也就是\lVert x_i\rVert=\lambda_i(\Lambda)。令\tilde{x_1},\ldots,\tilde{x_n}代表对应的Gram_Schmidt正交化结果。引入一个椭球体,轴为\tilde{x_1},\ldots,\tilde{x_n}所在的直线,长度为\lambda_1,\ldots,\lambda_n。可得如下椭球体内部空间(不包含边界):

易得,椭球体不包含任何非零格点。以二维为例子,理解为x_1向量在椭圆的边界,x_2向量在椭圆的外部,如下图:

此部分证明该椭球体用T表示时,该椭球体T的内部不包含任何非零格点。

取任意非零的格点y\in\Lambda,让1\leq k\leq n使得k是对应的最大值,且满足如下不等式:

||y||\geq\lambda_k(\Lambda)

如果x_1,\ldots,x_k,y是k+1个线性独立的向量,且要求它们的长度就都小于\lambda_{k+1}(\Lambda)   ,显然是互相矛盾的。所以可得

y\in span(\tilde{x_1},\ldots,\tilde{x_k})=span(x_1,\ldots,x_k) 

综合以上:

由此可得y\notin T

该椭球体的体积满足如下不等式:

vol(T)<2^ndet\Lambda

令a代表长半轴,b代表短半轴,椭圆的面积计算公式如下:

S=\pi\cdot a \cdot b

再结合闵可夫斯基凸体定理,所以可得: 

将两个不等式结合在一起,所以:

{(\prod_{i=1}^n)\lambda_i(\Lambda)}^{\frac{1}{n}}\leq\sqrt{n}{(det\Lambda)}^{\frac{1}{n}}

 定理证明完毕。

结论

密码技术随着信息表达、传输、处理技术变革而演进。经历了古典密码(密码盘、恩尼格玛密码机),现代密码(AES,RSA),新型密码(抗量子密码,同态密码,物理层密码)。

推荐阅读

如何寻找格上的最短向量:

The shortest vector problem in L2 is NP-hard for randomized reductions. M Ajtai - Proceedings of the thirtieth annual ACM symposium 1998 

如何将最短的向量运用于密码学中:

Public-key cryptosystems from the worst-case shortest vector problem. C Peikert - Proceedings of the forty-first annual ACM symposium 2009.

  • 3
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

唠嗑!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值