寻找素数对
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 15092 Accepted Submission(s): 7558
Problem Description
哥德巴赫猜想大家都知道一点吧.我们现在不是想证明这个结论,而是想在程序语言内部能够表示的数集中,任意取出一个偶数,来寻找两个素数,使得其和等于该偶数.
做好了这件实事,就能说明这个猜想是成立的.
由于可以有不同的素数对来表示同一个偶数,所以专门要求所寻找的素数对是两个值最相近的.
做好了这件实事,就能说明这个猜想是成立的.
由于可以有不同的素数对来表示同一个偶数,所以专门要求所寻找的素数对是两个值最相近的.
Input
输入中是一些偶整数M(5<M<=10000).
Output
对于每个偶数,输出两个彼此最接近的素数,其和等于该偶数.
Sample Input
20 30 40
Sample Output
7 13 13 17 17 23
code:
#include <iostream>
#include <cstdio>
#include <algorithm>
#define MAX_N 10010
using namespace std;
int a[MAX_N+1];
int p[MAX_N+1];
int nCount=0;
void Init(int n) //线性筛法,不过在小范围上(约n<1e7)不比上一个方法快
{
for (int i=2;i<=n;i++)
{
if (a[i]==0)
{
p[++nCount]=i;
}
for (int j=1,k; (j<=nCount) && (k=i*p[j])<=n; j++) //筛选循环
{
a[k] = 1 ;
if (i%p[j] == 0) break;
}
}
}
int main()
{
Init(10000);
int m;
while(~scanf("%d",&m)){
int x=m/2;
for(int i=x;i>1;i--){
if(a[i]==0&&a[m-i]==0){
printf("%d %d\n",i,m-i);break;
}
}
}
return 0;
}