题目链接:http://poj.org/problem?id=2137
题目意思是有n头个奶牛,第i头奶牛有Si个喜欢的草场,给出所有草场的x,y坐标。要求将n头奶牛放置在他喜欢的某个草场上,并且将他们从1到n依次用绳子连成一个环,求最短需要绳子长度。答案要求输出最小绳长的100倍保留整数的结果。
这是一道DP题,可以记f[i][j]表示考虑前i个奶牛,第i个奶牛在他第j个草场时需要的最短绳长。
转移方程:f[i][j]=max( f[i-1][k] + dis( i , j , i-1 , k ) ) 其中dis( i , j , i-1 , k ) 表示第i头牛的第j个草场和第i-1头牛的第k个草场
状态数一共有n*s个,状态转移是O(s)的,那么算法时间复杂度大概是O(n*s^2)。
但是在考虑第n头牛的时候,第n头牛还要跟第1头牛连在一起,这就很尴尬了,我的处理方法是枚举第1头牛所在的位置,这样一来复杂度又乘以了s,最终的复杂度是O(n*s^3)。由于n<100 s<40,于是就过了。
AC代码:
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <cmath>
#define MAXN 105
#define MAXS 42
#define INF 1000000000
#define Min(a,b) (a<b?a:b)
using namespace std;
double f[MAXN][MAXS];
int x[MAXN][MAXS];
int y[MAXN][MAXS];
int s[MAXN];
int n;
double dis(int a,int b,int c,int d)
{
double x1,y1;
x1=(x[a][b]-x[c][d])*(x[a][b]-x[c][d]);
y1=(y[a][b]-y[c][d])*(y[a][b]-y[c][d]);
return sqrt(x1+y1);
}
int main()
{
int i,j,k,t;
double ans=INF;
cin>>n;
for(i=0;i<n;i++)
{
scanf("%d",&s[i]);
for(j=0;j<s[i];j++)
scanf("%d%d",&x[i][j],&y[i][j]);
}
for(i=0;i<s[0];i++)
f[0][i]=0;
for(i=0;i<s[0];i++)
{
for(j=0;j<s[1];j++)
f[1][j]=dis(1,j,0,i);
for(j=2;j<n;j++)
{
if(j!=n-1)
for(k=0;k<s[j];k++)
{
f[j][k]=INF;
for(t=0;t<s[j-1];t++)
f[j][k]=Min(f[j][k],f[j-1][t]+dis(j,k,j-1,t));
}
else for(k=0;k<s[j];k++)
{
f[j][k]=INF;
for(t=0;t<s[j-1];t++)
f[j][k]=Min(f[j][k],f[j-1][t]+dis(j,k,j-1,t)+dis(j,k,0,i));
ans=Min(ans,f[j][k]);
}
}
}
cout<<(int)(ans*100)<<endl;
}