数据清洗和预处理期末总结

本文是对Hadoop及其HDFS和MapReduce的总结,详细介绍了Hadoop的分布式系统架构、优缺点、运行模式,以及HDFS的文件系统特性、数据存储和读写流程。MapReduce作为Hadoop的编程框架,其核心思想和序列化机制得到阐述,同时讨论了MapReduce在数据排序和计算中的应用。
摘要由CSDN通过智能技术生成

一.Hadoop基础
1.什么是Hadoop
Hadoop是一个分布式系统基础架构,主要解决海量数据的存储和海量数据的分析计算问题。

2.Hadoop的优缺点
优点:

高可靠性:Hadoop底层维护多个数据副本,所以即使某个计算元素或者存储出现故障,也不会出现数据的丢失。

高扩展性:在集群间分配任务数据,方便扩展数以千计的节点。

高效性:并行工作。

高容错性:能够自动将失败的任务自动分配。

3.Hadoop运行模式
本地模式:单机运行
伪分布模式:也是单机运行,但是具备Hadoop集群的所有功能,一台服务器模拟一个分布式的环境。

完全分布模式:多台服务器组成分布式的环境。

4.辨析Hadoop和Hadoop生态系统的概念
Hadoop是指Hadoop框架本身;Hadoop生态系统是指Hadoop及能够保证Hadoop正常运行的其他框架。如Zookeeper,Flume,Hive等。

5.Hadoop生态圈的组件
1)Zookeeper:它是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护,名字服务,分布式同步等。

2)HBase:它是一个分布式的,面向列的开源数据库。它是一个适合非结构化数据存储的数据库。

3)Hive:它是一个基于Hadoop的数据仓库工具,提供简单的SQL语句,可以将SQL语句转换为MapReduce任务进行运行。

4)Flume:它是一个高可用的,高可靠的,分布式的海量日志采集,聚合和传输的系统。

5)Sqoop:主要用于Hadoop,Hive和MySQL之间数据的传递

6)Spark:开源大数据内存计算框架

6.Hadoop集群正常工作中需要启动的进程及其作用:

NameNode:存储文件的元数据(如文件名,文件目录结构,文件属性)

DataNode:在本地文件系统存储文件块数据

SecondaryNameNode:每隔一段时间对NameNode元数据备份

NodeManager:执行任务

ResourceManager:负责调度DataNode上的工作

二.HDFS
1.HDFS定义
它是一个文件系统,用于存储文件,通过目录树来定位文件;它是分布式的,有很多服务器联合起来实现其功能;适合一次写入,多次读出的场景。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值