2021-08-10

V I I . I N F I N I T E S I M A L A N A L Y S I S \quad\quad VII.\quad INFINITESIMAL\quad ANALYSIS VII.INFINITESIMALANALYSIS
这 里 , 在 结 尾 之 际 , 我 们 应 该 解 释 一 下 前 面 的 那 些 探 讨 和 无 穷 小 分 析 理 论 之 间 的 关 系 。 这里,在结尾之际,我们应该解释一下前面的那些探讨和无穷小分析理论之间的关系。
我 们 说 一 个 无 级 变 幅 x 通 过 连 续 确 定 数 值 靠 近 一 个 固 定 值 α , 就 是 指 x 最 终 会 和 α \quad\quad 我们说一个无级变幅x通过连续确定数值靠近一个固定值\alpha,就是指x最终会和\alpha xαxα
共 同 处 于 某 两 个 数 之 间 , 或 者 , x 积 累 到 与 α 共 同 位 于 这 两 数 之 间 , 此 时 ∣ α − x ∣ 小 于 任 意 事 先 给 定 的 非 零 正 数 。 共同处于某两个数之间,或者,x积累到与\alpha 共同位于这两数之间,此时|\alpha-x|小于任意事先给定的非零正数。 xααx
一 个 重 要 的 定 理 是 这 样 说 的 : 如 果 一 个 变 数 x 持 续 增 长 , 但 是 不 会 超 过 所 有 的 限 制 , 那 么 它 必 然 趋 近 一 个 极 限 值 。 \quad 一个重要的定理是这样说的:如果一个变数x持续增长,但是不会超过所有的限制,那么它必然趋近一个极限值。 x
我 用 下 面 的 方 式 来 证 明 上 述 结 论 。 假 设 存 在 一 个 , 则 必 然 有 无 穷 多 个 数 α 2 , 使 得 x 始 终 < α 2 \quad\quad 我用下面的方式来证明上述结论。假设存在一个,则必然有无穷多个数\alpha2,使得x始终<\alpha2 α2使x<α2
我 把 所 有 这 样 的 α 2 划 归 于 δ 2 系 统 ; 其 他 的 数 α 1 划 归 δ 1 系 统 我把所有这样的\alpha2划归于\delta2系统;其他的数\alpha1划归\delta1系统 α2δ2α1δ1
后 者 , 即 δ 1 , 其 中 的 每 个 数 字 , 都 有 这 样 的 特 性 : 在 x 的 变 化 过 程 中 , x 最 终 会 ≥ α 1 , 这 样 每 个 α 1 后者,即\delta1,其中的每个数字,都有这样的特性:在x的变化过程中,x最终会\geq\alpha1,这样每个\alpha1 δ1:xxα1,α1
都 小 于 α 2 , 则 存 在 一 个 数 α , 它 或 者 是 δ 1 中 的 最 大 数 , 或 者 是 δ 2 中 的 最 小 数 ; 前 者 的 情 况 不 可 能 出 现 , 都小于\alpha2,则存在一个数\alpha,它或者是\delta1中的最大数,或者是\delta2中的最小数;前者的情况不可能出现, α2,α,δ1δ2
因 为 x 一 直 在 增 长 ( 我 注 : 如 果 δ 1 里 有 最 小 值 a , 根 据 δ 1 的 定 义 , x 最 终 会 > a , 则 a 显 然 不 是 最 小 值 , 另 , 这 里 的 证 明 不 适 用 于 因为x一直在增长(我注:如果\delta1里有最小值a,根据\delta1的定义,x最终会>a,则a显然不是最小值,另,这里的证明不适用于 x(δ1aδ1,x>a,a
l i m ( − 1 n ) n , 因 为 根 据 前 述 , 该 证 明 是 在 证 明 单 向 递 增 的 情 况 ) , 所 以 , α 是 δ 2 中 的 最 小 值 。 不 管 α 1 取 何 值 , lim(-\frac{1}{n})^n,因为根据前述,该证明是在证明单向递增的情况),所以,\alpha 是\delta2中的最小值。不管\alpha1取何值, lim(n1)n,)αδ2α1
最 终 都 有 α 1 < x < α , 即 , x 趋 近 α . 最终都有\alpha1<x<\alpha,即,x趋近\alpha. α1<x<α,xα.
这 个 定 理 等 价 于 连 续 法 则 , 即 , 一 旦 我 们 假 设 一 个 数 字 不 在 域 R 中 ; 或 者 表 述 为 , 如 果 这 个 定 理 正 确 , 那 么 V 中 的 定 理 I V 也 正 确 。 \quad\quad 这个定理等价于连续法则,即,一旦我们假设一个数字不在域R中;或者表述为,如果这个定理正确,那么V中的定理IV也正确。 RVIV
另 一 个 分 析 无 穷 小 的 定 理 , 与 上 述 定 理 类 似 , 也 经 常 被 用 到 , 陈 述 如 下 : 在 x 的 变 化 中 , 若 对 于 每 个 事 先 给 定 的 正 数 δ , \quad\quad 另一个分析无穷小的定理,与上述定理类似,也经常被用到,陈述如下:在x的变化中,若对于每个事先给定的正数\delta, xδ,
我 们 都 能 找 到 一 个 与 之 对 应 的 位 置 , 从 这 个 位 置 之 后 , x 的 变 动 都 会 小 于 δ , 那 么 x 趋 近 一 个 极 限 值 。 我们都能找到一个与之对应的位置,从这个位置之后,x的变动都会小于\delta, 那么x趋近一个极限值。 xδ,x
如 果 一 个 变 量 趋 近 某 个 极 限 , 则 最 终 该 变 量 的 变 化 会 小 于 任 何 给 定 正 数 , 这 个 原 理 可 以 从 前 面 的 定 理 轻 松 导 出 , 也 可 以 从 连 续 性 \quad\quad 如果一个变量趋近某个极限,则最终该变量的变化会小于任何给定正数,这个原理可以从前面的定理轻松导出,也可以从连续性
定 理 导 出 。 我 下 面 就 用 连 续 性 定 理 来 导 出 。 设 δ 是 任 意 正 数 , 则 根 据 假 设 , 存 在 一 个 时 间 点 , 在 其 之 后 , x 的 改 变 将 小 于 δ , 即 : 定理导出。我下面就用连续性定理来导出。设\delta是任意正数,则根据假设,存在一个时间点,在其之后,x的改变将小于\delta,即: δxδ,
如 果 此 时 的 x = a , 则 a − δ < x < a + δ 。 现 在 , 我 暂 时 不 用 原 始 的 假 设 , 而 是 使 用 已 经 被 刚 刚 证 明 的 定 理 如果此时的x=a,则a-\delta<x<a+\delta。现在,我暂时不用原始的假设,而是使用已经被刚刚证明的定理 x=aaδ<x<a+δ使
, 即 , 所 有 后 续 的 x 的 值 , 都 讲 位 于 事 先 给 定 的 两 数 之 间 。 在 此 基 础 上 , 我 对 实 数 做 两 组 分 割 。 对 于 系 统 δ 1 , 其 中 的 数 α 2 ( 例 如 , a + δ ) , 在 x ,即,所有后续的x的值,都讲位于事先给定的两数之间。在此基础上,我对实数做两组分割。对于系统\delta1,其中的数\alpha2(例如,a+\delta),在x xδ1,α2,a+δ,x
的 变 化 中 , 均 > x ; 系 统 δ 1 , 包 含 除 δ 2 以 外 的 其 他 数 。 如 果 α 1 是 这 样 的 数 , 那 么 不 管 这 个 过 程 进 行 了 多 久 , 都 会 发 生 无 数 次 的变化中,均>x;系统\delta1,包含除\delta2以外的其他数。如果\alpha1是这样的数,那么不管这个过程进行了多久,都会发生无数次 >x;δ1,δ2α1
x > α 2 ( 怀 疑 原 文 写 错 了 , 应 为 α 1 ) , 既 然 每 个 α 1 < α 2 , 那 么 必 然 存 在 一 个 确 定 的 数 α 产 生 了 实 数 系 统 R 的 这 个 分 割 ( δ 1 , δ 2 ) , 我 称 这 个 α 为 x>\alpha2(怀疑原文写错了,应为\alpha1),既然每个\alpha1<\alpha2,那么必然存在一个确定的数\alpha产生了实数系统R的这个分割(\delta1,\delta2),我称这个\alpha为 x>α2(怀α1),α1<α2,αRδ1,δ2,α
x 的 上 限 , 它 总 是 有 限 的 。 类 似 的 方 式 , 作 为 变 量 x 的 结 果 , 系 统 R 的 第 二 个 分 割 产 生 了 。 数 字 β 2 ( 例 如 , a − δ ) 分 配 给 B 2 , 在 x 最 终 变 得 比 x的上限,它总是有限的。类似的方式,作为变量x的结果,系统R的第二个分割产生了。数字\beta2(例如,a-\delta)分配给B2,在x最终变得比 xxRβ2(,aδ)B2x
β 大 的 过 程 中 , ; 每 个 其 他 的 β 2 , 分 配 给 B 2 的 这 些 β 2 , 有 这 样 的 特 性 : x 永 远 不 会 最 终 大 于 这 些 β 2 ; 因 此 , 有 无 穷 多 次 x 小 于 β 2 , \beta大的过程中,;每个其他的\beta2,分配给B2的这些\beta2,有这样的特性:x永远不会最终大于这些\beta2;因此,有无穷多次x小于\beta2, ββ2B2β2,xβ2xβ2,
产 生 这 个 分 割 的 β 我 称 之 为 x 的 下 限 值 。 α 和 β 有 这 样 的 特 征 : 若 ϵ 是 任 意 小 的 正 数 , 最 终 会 有 x < α + ϵ 和 x > α − ϵ 产生这个分割的\beta我称之为x的下限值。\alpha和\beta 有这样的特征:若\epsilon是任意小的正数,最终会有x<\alpha+\epsilon和x>\alpha-\epsilon βxαβϵx<α+ϵx>αϵ
而 不 会 发 生 最 终 x < α − ϵ 和 x > α + ϵ 。 这 样 就 只 有 两 种 可 能 , 若 α 和 β 是 两 个 不 相 同 的 数 , 那 么 只 能 是 α > β , 而不会发生最终x<\alpha-\epsilon和x>\alpha+\epsilon。这样就只有两种可能,若\alpha和\beta是两个不相同的数,那么只能是\alpha>\beta, x<αϵx>α+ϵαβα>β,
KaTeX parse error: Undefined control sequence: \alha at position 3: 因为\̲a̲l̲h̲a̲2持续>\beta2;变量x会…
KaTeX parse error: Undefined control sequence: \alha at position 65: …n多么小,我们最终总能得到x<\̲a̲l̲h̲a̲+\epsilon和x>\be…
x 靠 近 极 限 值 α 。 证 毕 。 x靠近极限值\alpha。证毕。 xα
这 些 例 子 足 以 表 明 连 续 性 法 则 和 无 穷 小 分 析 之 间 的 联 系 。 \quad\quad 这些例子足以表明连续性法则和无穷小分析之间的联系。











$$

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值