gather算子的CUDA编程和算子测试

知乎介绍参考添加链接描述
完整测试框架参考本人仓库
添加链接描述

gather算子的onnx定义参考添加链接描述,该算子的主要变换参考下图:
在这里插入图片描述
这里我们不妨以input = [A, dimsize, D], indices = [B,C], axis = 1举例子,此时对应的output形状是[A,B,C,D],并且根据gather算子定义,我们知道output[i,j,k,s] = input[i,indices[j,k], s],下面我们引入一些定义:
outputSize = ABCD, inputSize = AD×dimsize, indSize = BC。
那么此时我们可以看出,首先input和output共享一个othersize = AD,我们可以这么思考,对于output来说,可以把output分成两部分,看成一个[othersize, indSize]的矩阵,同样的,input也可以分成两部分,看成一个[othersize, dimsize]的矩阵,因此output和input共享了othersize部分的数据,后面的主要数学变换集中在后面部分。
除此之外,不管axis在哪,对于input和output来说,对应的stride是一样的,这里的stride表示axis对应的步长,比如说此时output形状为[A,B,C,D],对应的全局索引是i(BCD) + j(CD) + k(D) + s = i(BCD) + (j ×C+ k)×D + s,而input对应的全局索引是i(dimsize ×D) + indices[j,k]×D+s,此时的stride对应的就是D,也就是说,不管axis是多

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

谨慎付费(看不懂试读博客不要订阅)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值