JavaScript实现软件光栅化渲染器-如何画直线

本文介绍了计算机屏幕上光栅化渲染直线的问题及Bresenham算法的原理。Bresenham算法通过误差项调整,使得光栅化直线尽量接近实际直线,解决了在整数坐标网格中画连续直线的挑战。文章提供了算法的浮点数和整数版本的伪代码,并邀请读者访问作者个人网站获取更多资源。
摘要由CSDN通过智能技术生成

在计算机屏幕上画直线碰到的第一个问题是:由于屏幕是一个由整数坐标表示的2D网格,因此要在屏幕上显示类似 (20.5, 30.3) 的点几乎是不可能的,只能采用近似值,例如,把点显示为 (20, 30) 。或者采用较高级的算法,通过带权像素绘制出围绕 (20.5, 30.3) 、具有不同像素浓度的一系列点来代替这一点。

光栅化基础

把像素以最接近实际直线的位置从点 P0 到 P1 进行填充,这个过程称为光栅化。要理解光栅化的原理,先来温习一下斜率的定义。

直线的斜率同直线与x轴的夹角有关。如果一条直线的斜率为0,则该直线为水平直线;如果斜率为无穷大,则直线为垂直直线;如果斜率为1,则为45度的对角斜线。

斜率的定义为单位前进距离的上升量,数学表达式为:

斜率(m) = 上升/下降 = y方向的改变/x方向的改变 = dy/dx = (y2-y1)/(x2-x1)

例如:一条直线通过点 P0(1, 2) 和点 P1(5, 22),则该直线的斜率m = (22-2)/(5-1) = 5.0。那么,斜率5.0到底意味着什么呢?它意味着x坐标每增加1.0个单位,y坐标就相应增加5.0个单位。这就是光栅化算法的基础。所以,画一条直线的大致流程是:1、计算斜率m;2、画点(x, y);3、在x方向每前进1.0个单位,就在y方向相应前进m个单位,把这两个值加到(x, y)上;4、重复2-4步,直到完成。下图给出了点P0(1,2)到点P1(5,22)绘制的示意图。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值