搜索引擎问题
fpcfan
这个作者很懒,什么都没留下…
展开
-
SVM 基本原理
支持向量机的基本原理2008-08-05 10:04对于很多分类问题,例如最简单的,一个平面上的两类不同的点,如何将它用一条直线分开?在平面上我们可能无法实现,但是如果通过某种映射,将这些点映射到其它空间(比如说球面上等),我们有可能在另外一个空间中很容易找到这样一条所谓的“分隔线”,将这些点分开。SVM基本上就是这样的原理,但是SVM本身比较复杂,因为它不仅仅是应转载 2009-07-31 11:03:00 · 955 阅读 · 0 评论 -
SVM学习之一:libsvm中的数据预处理
名词解释:(1) SVM(Support Vector Machine)是从瓦普尼克(Vapnik)的统计学习理论发展而来的,主要针对小样本数据进行学习、分类和预测(有时也叫回归)的一种方法,能解决神 经网络不能解决的过学习问题。作者以为,类似的根据样本进行学习的方法还有基于案例的推理(Case-Based Reasoning),决策树归纳算法C4.5等,以后将详细阐述转载 2009-07-31 11:08:00 · 3562 阅读 · 1 评论 -
SVM
SVM的八股简介 (一)SVM的八股简介支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]。支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样转载 2009-07-31 10:57:00 · 1166 阅读 · 0 评论