R语言邂逅DeepSeek API:开启数据分析新旅程

一、R 语言:数据世界的瑞士军刀

在数据科学与统计分析的广袤天地中,R 语言宛如一把功能强大的瑞士军刀,以其独特的魅力与卓越的性能,成为众多数据从业者和科研人员的得力助手。

R 语言的诞生极富传奇色彩,它源于 1992 年,由新西兰奥克兰大学统计系的罗斯・伊哈卡(Ross Ihaka)和罗伯特・杰特曼(Robert Gentleman)基于 S 语言开发,初衷是为了给学生教授统计学提供便利。1995 年 6 月,R 语言通过 GPL 协议正式成为开源软件,自此,其源代码公开透明,吸引了全球开发者的目光,应用范围也如星火燎原般迅速拓展。1997 年 4 月 23 日,CRAN(Comprehensive R Archive Network)正式上线,托管的第三方 R 包为解决跨领域复杂问题提供了强大支撑。此后,R 语言不断发展,2005 年哈德利・威克汉姆(Hadley Wickham)博士推出的 ggplot2 包,更是极大地拓展了其画图功能 。截至 2024 年 7 月,CRAN 上的 R 包数量已增至 21085 个,为开发者实现高效、简洁的代码开发提供了有力保障。

R 语言的优势显著,开源免费是其一大亮点,这使得无论是科研机构还是企业,无需高昂的软件授权费用,就能自由使用。源包众多堪称 R 语言的 “秘密武器”,涵盖了从基础统计分析到复杂机器学习算法,从数据可视化到文本挖掘等几乎所有数据处理领域。以金融分析为例,quantmod 包能轻松获取和分析金融市场数据;在生物信息学领域,Bioconductor 系列包为基因数据分析提供了全方位支持。

R 语言的绘图功能更是强大到令人惊叹,它不仅能绘制常见的柱状图、折线图、散点图,对于复杂的 3D 图形、热图、网络图等也能轻松驾驭。借助 ggplot2 包,通过简单的代码就能创建出极具专业水准的可视化图表,如在展示不同城市房价走势时,用 ggplot2 绘制的折线图能清晰呈现价格随时间的变化趋势,为分析提供直观依据。

在科研领域,R 语言的身影无处不在。在医学研究中,它可用于处理临床实验数据,分析疾病发病率与各种因素的关联,助力医学突破;在社会学研究里,能对调查问卷数据进行深入挖掘,揭示社会现象背后的规律。在商业分析方面,R 语言同样大放异彩。企业利用它进行市场数据分析,洞察消费者行为和市场趋势,从而制定精准的营销策略;在金融风险评估中,R 语言可构建复杂的风险模型,为投资决策保驾护航。

二、搭建 R 语言舞台:环境搭建全攻略

在开启 R 语言与 DeepSeek API 的奇妙之旅前,我们得先搭建好稳固的基础 ——R 语言的运行环境。这就好比建造一座大厦,只有打好地基,才能让后续的工作顺利开展。接下来,让我们一步步走进 R 语言环境搭建的世界。

(一)下载安装 R 语言

R 语言的下载安装是踏上数据探索之旅的第一步。我们首先要前往 R 语言官方网站(http://cran.r-project.org),这里是 R 语言的资源宝库。网站界面简洁明了,在首页中,你能看到醒目的 “Download R” 按钮,点击它,便会进入镜像站点选择页面。镜像站点就像是分布在世界各地的资源仓库,我们可以挑选离自己地理位置较近的站点,以获得更快的下载速度,比如国内的清华大学镜像站(https://mirrors.tuna.tsinghua.edu.cn/CRAN/ )、上海交通大学镜像站(https://mirrors.sjtug.sjtu.edu.cn/cran/ )等。

选择好镜像站后,会进入下载页面,这里会根据不同的操作系统进行分类,如 Windows、Mac OS 和 Linux。以 Windows 系统为例,点击 “Download R for Windows”,接着点击 “base” 目录,里面便是 R 语言的安装文件,文件名为 “R - [版本号] - win.exe”,如 “R - 4.3.1 - win.exe” ,点击下载即可。

下载完成后,开始安装。双击安装文件,会弹出安装向导窗口。首先是选择安装语言,这里建议选择熟悉的中文,方便后续操作。接着是选择安装路径,默认情况下,R 会安装在 C 盘的 “Program Files” 文件夹下,如果你 C 盘空间有限,也可以选择其他磁盘空间充足的路径,但要注意路径中不要包含中文和空格,以免在后续使用中出现不必要的错误。

在安装组件选择步骤,对于 64 位操作系统的用户,建议全选所有组件,因为 64 位系统向下兼容 32 位系统,全选可以确保安装完整的功能。完成这些设置后,只需按照提示一步步点击 “下一步”,等待安装进度条完成,就大功告成了。安装完成后,桌面上会生成 “R” 的快捷方式,双击即可启动 R 语言。

(二)安装 RStudio

虽然 R 语言本身提供了基本的交互环境,但 RStudio 作为一款强大的集成开发环境(IDE),能让我们在使用 R 语言时如虎添翼。RStudio 界面友好,功能丰富,集代码编辑、调试、绘图、文件管理等多种功能于一体,极大地提高了我们的工作效率。

要安装 RStudio,我们需访问其官网(https://www.rstudio.com/ )。在官网首页,能清晰看到 “Products” 下拉菜单,选择 “RStudio” 进入产品页面,然后点击 “Download” 按钮,进入下载页面。这里有 “Desktop” 和 “Server” 两个版本,对于个人用户和本地开发,我们选择 “Desktop” 版本。

“Desktop” 版本又分为 “Open Source Edition(免费)” 和 “Commercial License(付费)” ,对于初学者和个人使用,免费的开源版已经完全足够,点击 “DOWNLOAD RSRUDIO DESKTOP” 按钮,根据自己的操作系统选择对应的安装包,如 Windows 系统选择 “RStudio - [版本号] - Windows Vista/7/8/10.exe” ,下载完成后,开始安装。

安装过程和一般软件类似,双击安装文件,按照安装向导提示,选择安装路径(同样建议路径不含中文和空格),然后点击 “安装” 按钮,等待安装完成。安装完成后,在开始菜单或桌面上找到 RStudio 的图标,点击即可启动。

(三)配置关联

当 R 语言和 RStudio 都安装完成后,通常情况下,RStudio 会自动关联已安装的 R 语言版本。我们打开 RStudio,在菜单栏中点击 “Tools”,选择 “Global Options”,在弹出的对话框中,选择 “General” 选项卡,在 “R version” 下拉菜单中,应该能看到已安装的 R 语言版本,表示关联成功。

但有时可能会出现未自动关联的情况,这时就需要手动配置。同样在 “Global Options” 的 “General” 选项卡中,点击 “R version” 下拉菜单中的 “Choose” 按钮,在弹出的文件浏览器中,找到 R 语言的安装路径,一般在安装时选择的路径下,如 “C:\Program Files\R\R - [版本号]” ,选择该路径下的 “bin” 文件夹中的 “R.exe” 文件,点击 “打开”,然后点击 “Apply” 和 “OK” 保存设置,这样 RStudio 就与 R 语言成功关联起来了。

三、探秘 DeepSeek API

在人工智能蓬勃发展的浪潮中,DeepSeek 宛如一颗耀眼的新星,迅速崛起并在大语言模型领域占据了重要的一席之地。它隶属于杭州深度求索人工智能基础技术研究有限公司,由知名量化资管巨头幻方量化于 2023 年 7 月 17 日创立 ,自诞生之初,便承载着推动通用人工智能(AGI)发展的使命。

DeepSeek API 作为其核心产品的对外接口,犹如一座桥梁,连接着开发者与强大的人工智能能力,具备诸多令人瞩目的特点。从技术实力来看,DeepSeek 的模型规模庞大且性能卓越。以 DeepSeek-V3 为例,它拥有 6710 亿参数,激活参数 370 亿,并在 14.8 万亿 token 数据上进行预训练 ,如此海量的数据与庞大的参数规模,使其在自然语言处理任务中展现出了非凡的能力,能够精准地理解和处理复杂的语义,生成高质量的文本。

在应用领域,DeepSeek API 展现出了广泛的适用性。在科研与技术开发方面,它在数学推理任务中表现优异,能够轻松应对复杂的数学问题,为科研人员提供有力的支持;在代码生成与优化上,支持多种编程语言,能根据开发者的需求自动生成高效代码,并快速检测潜在的 Bug 和优化点,大大提高了开发效率。在企业智能化升级进程中,DeepSeek API 同样发挥着关键作用。通过将其集成到智能客服系统中,企业能够实现自动化的客户问题解答和处理,提升客户服务的效率和质量;在数据分析和智能决策支持系统中,它能够处理复杂的逻辑推理任务,为企业的市场预测和策略制定提供准确的数据支持和决策建议。

与其他类似的 API 相比,DeepSeek API 在多个方面展现出独特的优势。在成本方面,它具有显著的性价比优势,训练成本仅为 OpenAI 同类模型的十分之一,API 用户使用成本仅为 OpenAI 的 5% ,这使得中小企业和开发者能够以较低的成本享受到先进的人工智能技术服务,降低了技术应用的门槛。在性能表现上,DeepSeek 采用了多头潜在注意力(MLA)、混合专家架构(MoE)和 FP8 低精度训练等创新技术 ,这些技术的应用使得模型在性能和效率上得到了显著提升。在推理效率上,DeepSeek 能够快速响应用户请求,通过低秩联合压缩技术减少推理过程中需要处理的数据量,同时利用动态调整路由偏置根据任务复杂程度自动调整数据处理路径,实现快速推理,为用户提供更加流畅的交互体验 。

四、R 语言与 DeepSeek API 的牵手之旅

(一)准备工作

调用 DeepSeek API 的第一步,是获取至关重要的 API 密钥,它就像是开启宝藏大门的钥匙。我们首先要访问 DeepSeek 的官方网站,在网站上找到注册入口,按照提示填写手机号或微信账号等信息完成注册。注册成功后,登录账号,仔细寻找创建 API 密钥的入口,一般会在个人中心或开发者设置等相关区域。

按照系统指引,即可生成属于自己的 API 密钥。生成后,务必将这个密钥妥善保管,它是我们调用 API 的重要凭证,一旦泄露,可能会导致安全问题,让他人非法使用我们的调用权限。可以将其记录在安全的文本文件中,并设置强密码保护该文件,或者使用专门的密码管理工具来存储。

(二)安装必要的 R 包

在 R 语言中调用 DeepSeek API,需要借助一些 R 包来实现高效的 HTTP 请求和数据处理。常用的 R 包如httr,它提供了一系列函数,让我们能够轻松地发送 HTTP 请求,无论是 GET、POST 还是其他类型的请求,都能通过httr包简洁地实现。jsonlite包则是处理 JSON 数据的得力助手,DeepSeek API 的响应数据通常以 JSON 格式返回,jsonlite包可以帮助我们快速、准确地解析和处理这些数据,将其转换为 R 语言中易于操作的数据结构。

安装这些 R 包的方法非常简单。在 RStudio 的控制台中,输入安装命令即可。例如,安装httr包,只需输入install.packages("httr"),然后按下回车键,RStudio 会自动从 CRAN 仓库中下载并安装该包。安装jsonlite包也是类似的操作,输入install.packages("jsonlite")即可。如果同时需要安装多个包,可以将包名放在一个字符向量中,如install.packages(c("httr", "jsonlite")),这样就能一次性完成多个包的安装。

(三)编写 R 代码调用 API

接下来,我们进入关键的代码编写环节,通过具体的代码示例,一步步实现 R 语言对 DeepSeek API 的调用。

 

# 加载必要的R包

library(httr)

library(jsonlite)

# 设置API密钥

api_key <- "your_api_key"

# 设置DeepSeek API的请求URL

api_url <- "https://api.deepseek.com/chat/completions"

# 设置请求头

headers <- add_headers(

Authorization = paste("Bearer", api_key),

`Content-Type` = "application/json"

)

# 构建请求体

data <- list(

messages = list(

list(role = "system", content = "你是一位专业的数据分析专家"),

list(role = "user", content = "请帮我分析一下如何提高电商销售额")

),

model = "deepseek-chat",

frequency_penalty = 0,

max_tokens = 2048,

presence_penalty = 0,

response_format = list(type = "text"),

stop = NULL,

stream = FALSE,

stream_options = NULL,

temperature = 0.7,

top_p = 1,

tools = NULL,

tool_choice = "none",

logprobs = FALSE,

top_logprobs = NULL

)

# 将请求体转换为JSON格式

data_json <- toJSON(data, auto_unbox = TRUE)

# 发送POST请求

response <- POST(url = api_url, headers = headers, body = data_json)

# 处理响应

if (status_code(response) == 200) {

result <- fromJSON(content(response, "text"))

cat(result$choices[[1]]$message$content, "\n")

} else {

cat("请求失败,状态码:", status_code(response), "\n")

cat("错误信息:", content(response, "text"), "\n")

}

在这段代码中,首先加载了httr和jsonlite两个包,为后续的操作做好准备。然后设置了 API 密钥和请求 URL,这两个参数是与 DeepSeek API 进行通信的基础。

在设置请求头时,通过add_headers函数添加了Authorization和Content-Type两个重要的头信息。Authorization用于身份验证,确保我们有权限调用 API,Content-Type指定了请求体的数据类型为 JSON,这是 DeepSeek API 所期望的格式。

构建请求体是一个关键步骤,这里使用list函数创建了一个包含各种参数的列表。messages参数是一个消息列表,其中包含了系统消息和用户消息,系统消息设定了模型的角色为专业的数据分析专家,用户消息则是我们向模型提出的问题,即如何提高电商销售额。model参数指定了使用的模型为deepseek - chat,还有其他一系列参数,如frequency_penalty(频率惩罚参数)、max_tokens(最大生成令牌数)等,这些参数可以根据具体需求进行调整,以控制模型的生成效果。

将请求体转换为 JSON 格式后,使用POST函数发送请求,将请求 URL、请求头和请求体作为参数传递给POST函数。最后,根据响应的状态码来处理响应。如果状态码为 200,表示请求成功,使用fromJSON函数将响应内容解析为 R 语言中的数据结构,并提取出模型生成的回答进行打印;如果状态码不为 200,则打印出请求失败的状态码和错误信息,方便我们排查问题。

(四)错误处理与优化

在调用 DeepSeek API 的过程中,难免会遇到各种问题,我们需要做好错误处理和代码优化工作,以确保程序的稳定性和高效性。

网络问题是常见的错误之一,比如网络连接不稳定、超时等。当遇到网络问题时,httr包会返回相应的错误信息。我们可以使用tryCatch函数来捕获这些错误,并进行相应的处理。例如:

 

tryCatch({

response <- POST(url = api_url, headers = headers, body = data_json)

}, error = function(e) {

cat("网络请求出现错误:", conditionMessage(e), "\n")

})

这样,当网络请求出现错误时,程序会捕获到错误,并打印出错误信息,而不会导致程序崩溃。

密钥错误也是一个需要关注的问题。如果我们输入的 API 密钥不正确,DeepSeek API 会返回 401 Unauthorized 错误。在代码中,我们可以通过检查响应的状态码来判断是否是密钥错误:

 

if (status_code(response) == 401) {

cat("API密钥错误,请检查密钥是否正确。\n")

}

除了错误处理,优化代码也能提升调用效率。在参数设置方面,合理调整max_tokens、temperature等参数可以在满足需求的前提下降低成本。如果对生成文本的长度要求不高,可以适当减小max_tokens的值,避免生成过多不必要的内容,从而减少计算资源的消耗和调用成本;temperature参数控制着生成文本的随机性,对于一些对准确性要求较高的任务,可以将temperature设置得较低,使生成的文本更加稳定和确定。

在请求频率方面,要注意 DeepSeek API 可能存在的速率限制。如果在短时间内发送过多请求,可能会触发限制,导致请求被拒绝。我们可以通过设置适当的延迟时间来控制请求频率,例如使用Sys.sleep函数在每次请求后暂停一段时间:

 

for (i in 1:10) {

response <- POST(url = api_url, headers = headers, body = data_json)

# 处理响应

Sys.sleep(1) # 暂停1秒

}

这样可以确保请求频率在合理范围内,避免因频繁请求而出现问题。

五、应用实战:以数据分析项目为例

(一)项目背景与目标

在当今竞争激烈的市场环境下,企业对市场动态和消费者需求的洞察至关重要。假设我们身处一家美妆公司,为了推出一款新的口红产品,需要深入了解市场情况和消费者偏好,从而制定精准的营销策略。这就引出了我们的市场调研数据分析项目。

本次项目的目标十分明确。首先,要全面了解目标市场的规模和增长趋势,明确口红市场在整个美妆市场中的占比以及未来的发展走向,为产品的市场定位提供宏观依据。其次,深入剖析消费者的购买行为和偏好,包括消费者对口红颜色、质地、品牌的喜好,购买渠道的选择,以及购买频率和消费金额等方面,以便精准把握目标客户群体的需求。再者,对竞争对手的产品和营销策略进行详细分析,找出竞争对手的优势和劣势,发现市场空白点,为我们新口红产品的差异化竞争提供思路。

(二)数据处理与分析

为了实现上述目标,我们收集了多渠道的数据。通过线上调查问卷,收集了消费者的基本信息、口红使用习惯和偏好等数据;从电商平台获取了各类口红产品的销售数据,包括销量、价格、用户评价等;还收集了竞争对手的产品宣传资料、市场活动信息等文本数据。

在数据处理阶段,R 语言发挥了关键作用。我们首先使用readr包读取数据,将收集到的各种格式的数据文件导入到 R 环境中。例如,读取 CSV 格式的调查问卷数据文件:

 

library(readr)

survey_data <- read_csv("survey_data.csv")

然后,进行数据清洗工作。利用 R 语言的函数和包,检查并处理数据中的缺失值、重复值和异常值。对于缺失值较少的情况,我们可以使用na.omit()函数直接删除包含缺失值的记录;对于缺失值较多的列,如果该列对分析结果影响不大,也可以考虑直接删除该列;如果缺失值不能简单删除,还可以根据数据的分布特点,使用均值、中位数或其他更复杂的方法进行填充。例如,用均值填充数值型变量的缺失值:

 

survey_data$age[is.na(survey_data$age)] <- mean(survey_data$age, na.rm = TRUE)

对于重复值,使用duplicated()函数判断数据是否重复,再用subset()函数去除重复数据:

 

duplicated_rows <- duplicated(survey_data)

survey_data <- subset(survey_data,!duplicated_rows)

在处理电商平台销售数据时,可能会遇到数据格式不一致的问题,比如价格数据可能包含货币符号和千位分隔符,我们需要使用stringr包中的函数进行数据转换,将其转换为数值型数据,以便后续分析。

 

library(stringr)

sales_data$price <- str_remove_all(sales_data$price, "[^0-9.]")

sales_data$price <- as.numeric(sales_data$price)

在分析消费者偏好和市场趋势时,我们借助 DeepSeek API 来处理文本数据。比如,从用户评价和调查问卷的文本内容中提取关键信息。以分析用户对口红颜色的偏好为例,向 DeepSeek API 发送请求:

 

# 加载必要的R包

library(httr)

library(jsonlite)

# 设置API密钥

api_key <- "your_api_key"

# 设置DeepSeek API的请求URL

api_url <- "https://api.deepseek.com/chat/completions"

# 设置请求头

headers <- add_headers(

Authorization = paste("Bearer", api_key),

`Content-Type` = "application/json"

)

# 构建请求体,提取用户评价中关于口红颜色偏好的信息

data <- list(

messages = list(

list(role = "system", content = "你是一位专业的文本分析专家,擅长从用户评价中提取关键信息"),

list(role = "user", content = "请从以下用户评价中提取出他们对口红颜色的偏好:[用户评价文本内容]")

),

model = "deepseek-chat",

frequency_penalty = 0,

max_tokens = 1024,

presence_penalty = 0,

response_format = list(type = "text"),

stop = NULL,

stream = FALSE,

stream_options = NULL,

temperature = 0.7,

top_p = 1,

tools = NULL,

tool_choice = "none",

logprobs = FALSE,

top_logprobs = NULL

)

# 将请求体转换为JSON格式

data_json <- toJSON(data, auto_unbox = TRUE)

# 发送POST请求

response <- POST(url = api_url, headers = headers, body = data_json)

# 处理响应

if (status_code(response) == 200) {

result <- fromJSON(content(response, "text"))

color_preferences <- result$choices[[1]]$message$content

# 进一步处理提取到的颜色偏好信息,例如统计各种颜色被提及的次数

color_counts <- table(strsplit(color_preferences, " ")[[1]])

print(color_counts)

} else {

cat("请求失败,状态码:", status_code(response), "\n")

cat("错误信息:", content(response, "text"), "\n")

}

在进行统计分析时,R 语言丰富的统计函数和包让我们能够轻松实现各种分析方法。使用dplyr包进行数据汇总和计算,计算不同品牌口红的平均销量、销售额等指标;使用ggplot2包进行数据可视化,绘制柱状图展示不同颜色口红的受欢迎程度,绘制折线图展示不同时间段口红的销售趋势。例如,绘制不同品牌口红销量的柱状图:

 

library(dplyr)

library(ggplot2)

brand_sales <- sales_data %>%

group_by(brand) %>%

summarize(total_sales = sum(quantity))

ggplot(brand_sales, aes(x = brand, y = total_sales)) +

geom_bar(stat = "identity") +

labs(title = "不同品牌口红销量对比", x = "品牌", y = "销量")

(三)结果展示与解读

经过一系列的数据处理和分析,我们得到了丰富的结果,并通过直观的图表进行展示。在消费者偏好方面,通过对用户评价和调查问卷的分析,我们发现正红色、豆沙色和番茄色是最受消费者喜爱的口红颜色,这一结果通过颜色偏好柱状图一目了然。在购买渠道上,线上电商平台的购买比例高达 70%,其中某知名电商平台的购买量占比达到 40%,通过饼图可以清晰地展示各购买渠道的占比情况。

在市场趋势方面,通过对销售数据的时间序列分析,绘制出的折线图显示口红市场在过去几年一直保持稳定增长,年增长率约为 8%,预计在未来两年仍将保持这一增长趋势。

在竞争对手分析中,我们发现竞争对手 A 的产品以高端定位为主,价格较高,但品牌知名度高,用户忠诚度也较高;竞争对手 B 主打性价比,产品价格亲民,销量较大,但在产品创新方面相对较弱。通过雷达图可以全面展示各竞争对手在价格、品牌知名度、产品创新、用户忠诚度等多个维度的表现。

从这些结果中,我们可以得出一系列有价值的结论,为新口红产品的推出和营销策略制定提供有力支持。基于消费者对颜色的偏好,我们在产品研发时可以重点推出正红色、豆沙色和番茄色这几款颜色的口红;针对线上购买渠道占比高的特点,加大在电商平台的营销投入,优化店铺页面,提高产品搜索排名;考虑到市场的增长趋势,提前规划产能,以满足未来市场需求;对比竞争对手的优势和劣势,我们可以将产品定位为中高端,在保证产品品质的同时,注重产品创新,推出具有独特卖点的口红产品,如添加天然保湿成分,以吸引更多消费者。

六、总结与展望

通过前面的探索,我们深入了解了 R 语言调用 DeepSeek API 的全过程。从 R 语言强大的功能和丰富的生态,到搭建稳定的运行环境,再到与 DeepSeek API 的成功对接,每一步都为我们开启了数据处理和人工智能应用的新大门。在实际项目中,这种结合展现出了巨大的优势,能够高效地处理和分析海量数据,挖掘数据背后的价值,为决策提供有力支持。

展望未来,R 语言与 DeepSeek API 的结合有望在更多领域绽放光彩。在生物信息学领域,借助 DeepSeek API 强大的语言理解和分析能力,与 R 语言丰富的生物信息学工具包相结合,能够更深入地解读基因序列数据,揭示生命奥秘;在金融领域,实时处理和分析市场数据,利用 DeepSeek API 进行智能预测和风险评估,为投资决策提供更精准的依据;在教育领域,开发智能辅导系统,根据学生的学习情况和问题,通过 R 语言调用 DeepSeek API 提供个性化的学习建议和解答,提升教育质量。

R 语言调用 DeepSeek API 为我们提供了无限的创新可能。希望读者能够积极探索,将这一技术应用到更多的实际场景中,挖掘其更多的潜力,为自己的工作和研究带来新的突破。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计算机学长

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值