FastGPT 引申:利用 Prompt 实现 Agent 记忆能力

FastGPT 引申:利用 Prompt 实现 Agent 记忆能力

参考 FastGPT 记忆能力,设计如下的 Prompt 模板,该模板通过明确的角色、知识库、交互历史等标记,实现了对用户输入的多轮交互记忆管理。

Prompt 定义


下面的内容正是我在项目中使用的 Prompt:

# 角色:你是一个任务失败诊断专家,可以根据用户输入结合知识库和交互历史内容进行简要分析,适当给出解决方案。

# 知识库:使用 <Data></Data> 标记中的内容作为你的知识
<Data>

</Data>

# 回答要求:
- 如果你不清楚答案,你需要澄清。
- 避免提及你是从 <Data></Data> 获取的知识。
- 保持答案与 <Data></Data> 中描述的一致。
- 保持答案与 <History></History> 中描述的一致。
- 使用 Markdown 语法优化回答格式。
- 使用中文进行回答。

# 交互历史:使用 <History></History> 标记中的内容作为你的交互历史 
<History>
- 第一轮
```
我是张三
```
```
你好,张三!有什么问题我可以帮助你解答吗?无论是工作、学习还是生活上的疑问,都可以随时问我。

```
- 第二轮
```
我是谁
```
```
很高兴能够帮助你,张三。如果你有任何问题或需要帮助,请随时告诉我。
```
- 第三轮
```
我改名了,我叫李四
```
```
好的,我理解了,李四。请问有什么问题我可以帮助您解答吗?无论是工作、学习还是生活上的疑问,都可以随时问我。如果您有任何问题或需要帮助,请随时告诉我。
```
- 第四轮
```
我叫什么
```
```
很高兴能够帮助你,李四。请问有什么问题我可以帮助您解答吗?无论是工作、学习还是上的疑问,都可以随时问我。如果您有任何问题或需要帮助,请随时告诉我。
```
</History>

# 本次输入:
我之前都起过什么名字

常见实现方式


为了增强 Agent 的智能与连续性,除了在 Prompt 中利用交互历史实现短期记忆外,业界目前还探索了多种记忆机制,主要包括:

  1. 短期记忆

    • 上下文窗口与 KV Cache
      Transformer 模型利用上下文窗口和 KV Cache 存储最近对话内容,实现类似“短期记忆”的效果,支持实时对话中的信息捕捉和处理。
    • 实时上下文整合
      通过提示工程动态整合最新输入,使得 Agent 能保持最新状态并快速响应。
  2. 长期记忆

    • 向量数据库检索(RAG)
      将历史交互内容转为向量后存储于外部数据库,利用相似度搜索在需要时召回相关信息,这种方式广泛用于RAG(检索增强生成)架构。
    • 记忆总结与压缩
      定期将长对话进行总结,提炼关键信息生成摘要,既节省存储空间又便于后续检索,有效应对上下文窗口长度限制。
  3. 记忆流与反思机制

    • 记忆流(Memory Stream)
      以时间轴方式记录所有交互观察,每条记录包含描述和时间戳。检索时综合近期性、重要性和相关性打分排序,选择最有价值的信息作为决策参考。
    • 反思与计划结合
      部分系统通过定期反思,将低层次观察抽象为高层次总结,形成反思树,辅助 Agent 在规划和决策时调用更具概括性的记忆内容。
  4. 情节记忆与语义记忆

    • 情节记忆
      记录具体的交互事件,类似于人类对特定经历的记忆,有助于回顾详细情境。
    • 语义记忆
      存储关于世界的常识和背景知识,常与外部知识库结合,为Agent提供更全面的信息支持。

内容总结


通过在 Prompt中明确标记角色、交互历史及知识库,我的项目实现了对多轮对话的有效管理。同时,结合短期记忆、长期记忆、记忆流与反思机制等多种实现方式,Agent 可以更好地模拟人类的记忆特性,既保持实时对话的连贯性,又能在长期交互中不断优化自身表现。这样的设计不仅提升了系统智能,也为后续的功能扩展奠定了坚实基础。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值