继上一篇完成了井字棋(N子棋)的minimax 最佳策略后,我们基于Pygame来创造一个图形游戏环境,可供人机和机器对弈,为后续模拟AlphaGo的自我强化学习算法做环境准备。OpenAI Gym 在强化学习领域是事实标准,我们最终封装成OpenAI Gym的接口。本篇所有代码都在github.com/MyEncyclopedia/ConnectNGym。
* 第一篇: Leetcode中的Minimax 和 Alpha Beta剪枝
* 第二篇: 井字棋Leetcode系列题解和Minimax最佳策略实现
-
第三篇: 井字棋、五子棋的OpenAI Gym GUI环境
-
第四篇: 井字棋、五子棋的蒙特卡洛树搜索(MCTS)
井字棋、五子棋 Pygame 实现

Python 上有Tkinter,PyQt等跨平台GUI类库,主要用于桌面程序编程,但此类库容量较大,编程也相对麻烦。Pygame具有代码少,开发快的优势,比较适合快速开发五子棋这类桌面小游戏。
Pygame 极简入门
与所有的GUI开发相同,Pygame也是基于事件的单线程编程模型。下面的例子包含了显示一个最简单GUI窗口,操作系统产生事件并发送到Pygame窗口,while True 控制了python主线程永远轮询事件。我们在这里仅仅判断了当前是否是关闭应用程序事件,如果是则退出进程。此外,clock 用于控制FPS。
import sys
import pygame
pygame.init()
display = pygame.display.set_mode((800,600))
clock = pygame.time.Clock()
while True:
for event in pygame.event.get():
if event.type == pygame.QUIT:
sys.exit(0)
else:
pygame.display.update()
clock.tick(1)
PyGameBoard 主体代码
PyGameBoard类封装了Pygame实现游戏交互和显示的逻辑。上一篇中,我们完成了ConnectNGame逻辑,这里PyGameBoard需要在初始化时,指定传入ConnectNGame 实例(见下图),支持通过API 方式改变其状态,也支持GUI交互方式等待人类玩家的输入。next_user_input(self)实现了等待人类玩家输入的逻辑,本质上是循环检查GUI事件直到有合法的落子产生。
class PyGameBoard:
def __init__(self, connectNGame: ConnectNGame):
self.connectNGame = connectNGame
pygame.init()
def next_user_input(self) -> Tuple[int, int]:
self.action = None
while not self.action:
self.check_event()
self._render()
self.clock.tick(60)
return self.action
def move(self, r: int, c: int) -> int:
return self.connectNGame.move(r, c)
if __name__ == '__main__':
connectNGame = ConnectNGame()
pygameBoard = PyGameBoard(connectNGame)
while not pygameBoard.isGameOver():
pos = pygameBoard.next_user_input()
pygameBoard.move(*pos)
pygame.quit()
check_event 较之极简版本增加了处理用户输入事件,这里我们仅支持人类玩家鼠标输入。方法_handle_user_input 将鼠标点击事件转换成棋盘行列值,并判断点击位置是否合法,合法则返回落子位置,类型为Tuple[int, int],例如(0, 0)表示棋盘最左上角位置。
def check_event(self):
for e in pygame.event.get():
if e.type == pygame.QUIT:
pygame.quit()
sys.exit(0)
elif e.type == pygame.MOUSEBUTTONDOWN:
self._handle_user_input(e)
def _handle_user_input(self, e: Event