题目
给你一个正整数数组 arr,考虑所有满足以下条件的二叉树:
每个节点都有 0 个或是 2 个子节点。
数组 arr 中的值与树的中序遍历中每个叶节点的值一一对应。(知识回顾:如果一个节点有 0 个子节点,那么该节点为叶节点。)
每个非叶节点的值等于其左子树和右子树中叶节点的最大值的乘积。
在所有这样的二叉树中,返回每个非叶节点的值的最小可能总和。这个和的值是一个 32 位整数。
输入:arr = [6,2,4]
输出:32
解释:
有两种可能的树,第一种的非叶节点的总和为 36,第二种非叶节点的总和为 32。
思路分析
- 令dp[i][j]为数组从[i,…,j]的最小值.
- 当j=i+1,此时只剩两个数字,此时的答案就是这两个数值的乘积.
- 当j>i+1的时候,那么此时我们可以由j-i个划分位置,我们依次来遍历这么多的位置,然后选取其中的最小结果.为了得到划分位置左子树和右子树的最大值,我们需要使用一个额外的数组来存储这些的数值.
代码
class Solution {
public:
int mctFromLeafValues(vector<int>& arr) {
int n = arr.size();
vector<vector<int>> dp(n , vector<int>(n , 0x3f3f3f3f));
vector<vector<int>> maxVal(n , vector<int>(n , 0));
for(int i = n - 1;i >= 0;i--){//选取现有的最大值
dp[i][i] = 0;
maxVal[i][i] = arr[i];
for(int j = i + 1;j < n;j++){
maxVal[i][j] = max(maxVal[i + 1][j], maxVal[i][j - 1]);
}
}
for(int i = n - 1;i >= 0;i--){//从右下角的位置开始填写右上角的矩阵
for(int j = i + 1;j < n;j++){
for(int k = i;k < j;k++){
dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j] + maxVal[i][k] * maxVal[k + 1][j]);
}
}
}
return dp[0][n - 1];
}
};
#
数组实例化的过程
首先,我们这个过程中的maxVal的数组如下:
6 6 6
0 2 4
0 0 4
其次,在更新右上角的dp矩阵的变化如下所示:
1 2
0 1061109567 1061109567
1061109567 0 8
1061109567 1061109567 0
0 1
0 12 1061109567
1061109567 0 8
1061109567 1061109567 0
0 2
0 12 32
1061109567 0 8
1061109567 1061109567 0
最终的结果就是dp[0][l-1]=32