leecode.1130. 叶值的最小代价生成树

题目

叶值的最小代价生成树

给你一个正整数数组 arr,考虑所有满足以下条件的二叉树:

每个节点都有 0 个或是 2 个子节点。
数组 arr 中的值与树的中序遍历中每个叶节点的值一一对应。(知识回顾:如果一个节点有 0 个子节点,那么该节点为叶节点。)
每个非叶节点的值等于其左子树和右子树中叶节点的最大值的乘积。
在所有这样的二叉树中,返回每个非叶节点的值的最小可能总和。这个和的值是一个 32 位整数。

输入:arr = [6,2,4]
输出:32
解释:
有两种可能的树,第一种的非叶节点的总和为 36,第二种非叶节点的总和为 32。

在这里插入图片描述

思路分析

  • 令dp[i][j]为数组从[i,…,j]的最小值.
  • 当j=i+1,此时只剩两个数字,此时的答案就是这两个数值的乘积.
  • 当j>i+1的时候,那么此时我们可以由j-i个划分位置,我们依次来遍历这么多的位置,然后选取其中的最小结果.为了得到划分位置左子树和右子树的最大值,我们需要使用一个额外的数组来存储这些的数值.

代码

class Solution {
public:
    int mctFromLeafValues(vector<int>& arr) {
        int n = arr.size();
        vector<vector<int>> dp(n , vector<int>(n , 0x3f3f3f3f));
        vector<vector<int>> maxVal(n , vector<int>(n , 0));
        for(int i = n - 1;i >= 0;i--){//选取现有的最大值
            dp[i][i] = 0;
            maxVal[i][i] = arr[i];
            for(int j = i + 1;j < n;j++){
                maxVal[i][j] = max(maxVal[i + 1][j], maxVal[i][j - 1]);
            }
        }
        for(int i = n - 1;i >= 0;i--){//从右下角的位置开始填写右上角的矩阵
            for(int j = i + 1;j < n;j++){
                for(int k = i;k < j;k++){
                    dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j] + maxVal[i][k] * maxVal[k + 1][j]);
                }
            }
        }
        return dp[0][n - 1];
    }
};

# 

数组实例化的过程

首先,我们这个过程中的maxVal的数组如下:
6 6 6
0 2 4
0 0 4
其次,在更新右上角的dp矩阵的变化如下所示:
1 2
0 1061109567 1061109567
1061109567 0 8
1061109567 1061109567 0

0 1
0 12 1061109567
1061109567 0 8
1061109567 1061109567 0

0 2
0 12 32
1061109567 0 8
1061109567 1061109567 0
最终的结果就是dp[0][l-1]=32

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值