剑指 Offer 13. 机器人的运动范围

题目

地上有一个m行n列的方格,从坐标 [0,0] 到坐标 [m-1,n-1] 。一个机器人从坐标 [0, 0] 的格子开始移动,它每次可以向左、右、上、下移动一格(不能移动到方格外),也不能进入行坐标和列坐标的数位之和大于k的格子。例如,当k为18时,机器人能够进入方格 [35, 37] ,因为3+5+3+7=18。但它不能进入方格 [35, 38],因为3+5+3+8=19。请问该机器人能够到达多少个格子?

在这里插入图片描述

思路

用广度优先搜索

代码

class Solution {
public:
    int getSum(int m,int n){
        int ans = 0;
        while(m || n){
            ans += m % 10;
            m = m / 10;
            ans += n % 10;
            n = n / 10;
        }
        return ans;
    }
    int movingCount(int m, int n, int k) {
        bool legal[105][105] = {true};
        for(int i = 0;i < m;i++){
            for(int j = 0;j < n;j++){
                int ans = getSum(i,j);
                if(ans > k) legal[i][j] = false;
                else legal[i][j] = true;
            }
        }
        int dir[4][2]={{1,0},{-1,0},{0,1},{0,-1}};
        queue<pair<int, int>> q;
        q.push({0,0});
        bool vis[102][102] = {false};
        int ans = 0;
        vis[0][0] = true;
        while(!q.empty()){
            ans++;
            pair<int, int> cur = q.front();
            q.pop();
            for(int i = 0;i < 4;i++){
                int nx = cur.first + dir[i][0];
                int ny = cur.second + dir[i][1];
                if(nx >= 0 && nx < m && ny >= 0 && ny < n && legal[nx][ny] && !vis[nx][ny]){
                    q.push({nx, ny});
                    vis[nx][ny] = true;
                } 
            }
        }
        return ans;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值