Collaborative Deep Learning for Recommender Systems

本文提出了一种将深度学习SDAE与协同过滤结合的协同深度学习(CDL)模型,通过贝叶斯框架实现内容与用户评分矩阵的双向影响,提升推荐精准度。实验在citeulike Netix数据集上进行,使用MATLAB环境,结果显示CDL在召回率和MAP指标上表现出色。
摘要由CSDN通过智能技术生成

本文思路整理如下:

 

一, Contribution

二, 实验

实际需求

训练数据

实验环境

2.1本文模型

模型训练

模型输出

2.2 实验结

Collaborative Deep Learning for Recommender Systems


目的:采用分层贝叶斯CDL构建模型,将深度学习SDAE和协同过滤结合起来,从而得以更精准推荐。

 

论文信息:香港理工大学王灏博士。

一,Contribution:

1)CDL可抽取content的深度特征,并捕获content或者user的相似度。这种学习方式不仅可以用于推荐,也可以用于别的地方。

2)学习目标不是简单的分类或者reconstruction,本文的目标是通过概率框架用CF做一个更复杂的目标。

3)用了最大后验估计(MAP)CDL贝叶斯法则的抽样,贝叶斯版本的反向传播。

4)用贝叶斯模型连接DLRS


二, 实验:


首先:考虑目前推荐系统算法现状:

当前推荐算法主要是基于内容(CB)、协同过滤(CF)、混合算法。基于内容的推荐依靠用户profile和item的描述做推荐;CF基于过去的的表现和行为推荐;混合方法应用比较广。

混合方法又分两种:松耦合方式、紧耦合方式。松耦合方式先处理辅助信息,然后,用它为CF提供特征。由于信息的流向是单向的,打分信息无法反馈回来去提取有用的特征。这种方式下,为了提升性能,通常依赖人工提取特征。紧耦合方式,两种方法相互影响,一方面,打分信息指导特征的提取,另一方面,提取出来的特征进一步促进CF的预测能力(例如,稀疏打分矩阵的矩阵因式分解)。两方面的相互影响,使得紧耦合方式可以从辅助信息中自动学习特征,并且能平衡打分信息和辅助信息的影响。这使得紧耦合方法比松耦合方法表现更好。

 

基于上面考虑,本论文讲述了一种多层贝叶斯模型(hierarchical Bayesian model)叫协同深度学习(CDL)。实际上

  • 2
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值