Deep Learning

DL原理:

当输入和输出相同时,中间可能要经过很多层。那么中间的很多层都可以当做是输入层的一种表示,DL就是来解决这些问题的,学到里面的feature。


sparse coding:


是一组基(线性代数中基的思想:向量空间里的基不唯一,但维数是固定的,例如三维空间里面,只需找到三个相互垂直的向量,那么就可以作为一组基,但是维数只能为三)

当训练阶段结束,那么X和对应的基都是已知的,问题就转化为求a,也是特征表示(把X用基来表示)

在确定和a的过程中,采用先固定其中一个,再最优化另一个的方式,不断迭代,最后求得最优解。


最普遍的例子就是:


0的个数还是比较多,所以叫做稀疏编码。0.8、0.3、0.5就是上述的a,右边小的子图像就是基

self-taught learning:

举个例子:


在上图中,如果通过前两张图像辨别是否是摩托车,那么可能结果不一定准确,但是呢,如果加入unlabeled images,学到其中的特征,再根据最后一张图的特征,便可以得到是不是摩托车。

RBM:

在RBM中,可以处理二值的输入,也可以处理实数的输入数据:


在图中,V可视为h的一种特征表示,而h也可以视为V的一种特征表示

所以条件概率p(h|v)可以当做是一种特征表示


Gibbs sampling:

随机赋值给数据集合,求所有的.

......


不断的sample,得到一组数据,再根据这组数据求我们的联合概率。。

举个例子,想要求P(x,y),x和y分别是二值向量,那么x,y共有4种取值情况,x=0,y=0;x=0,y=1;x=1,y=1;x=1,y=0

在sample到的数据可能有很多,那么就可以求出这个联合分布的概率。

有噪音的autoencoder:


x是正常的数据,我们可以加入噪音x,让x~成为噪音数据,再得到噪音数据的一种表示h,还原h的表示,得到X^,那么x与X^会存在一定误差,最小化这个误差即可。

通常用在overfiting中,我们为避免这个情况,就故意加入噪音数据,让模型得到最优解。



DBN原理:

fine-tuning 指的是使得最优化参数,得到参数的最优解。


类似于LDA模型,可以当做是文档的生成过程,当文档是已知的情况下,我们反推,最优化,去求得参数。

现在,我们已知所有图像,那么去求得模型的参数。

这一步是通过Q求得的。再通过P就可以知道整个模型的表示,P这是其中的一种表示,因为我们已经知道了模型的参数,所以整个DBN都可以知道了,就可以应用于各种问题了。


在deep RBM中:


在已知h1和h3的条件下,hj2与h2中其他元素都是条件独立的。那么就可以求,,这个跟RBM是一样的。。P(h=1|V),因为在已知V的情况下,所有的h是互相独立的。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值