斐波纳契数列的通项公式

转载 2011年10月12日 20:19:52
斐波那契数列
       “斐波那契数列”的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,籍贯大概是比萨,卒于1240年后)。他还被人称作“比萨的列昂纳多”。1202年,他撰写了《珠算原理》(Liber Abaci)一书。他是第一个研究了印度阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及叙利亚希腊西西里普罗旺斯研究数学

达·芬奇密码》中还提到过这个斐波那契数列..

斐波那契数列指的是这样一个
数列:1,1,2,3,5,8,13,21…… 
这个数列从第三项开始,每一项都等于前两项之和。它的通项公式为:(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】

很有趣的是:这样一个完全是
自然数的数列,通项公式居然是用无理数来表达的。 


该数列有很多奇妙的属性 

比如:随着数列项数的增加,前一项与后一项之比越逼近
黄金分割0.6180339887…… 
还有一项性质,从第二项开始,每个
奇数项的平方都比前后两项之积少1,每个偶数项的平方都比前后两项之积多1 

如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的
长方形,故作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到 

如果任意挑两个数为起始,比如5、-2.4,然后两项两项地相加下去,形成5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6……等,你将发现随着数列的发展,前后两项之比也越来越逼近黄金分割,且某一项的
平方与前后两项之积的差值也交替相差某个值


斐波那契数列别名
斐波那契数列又因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”。



斐波那挈数列通项公式的推导

斐波那挈数列:1,1,2,3,5,8,13,21…… 

如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:
F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)

显然这是一个线性递推数列。


通项公式的推导方法一:利用特征方程

线性递推数列的特征方程为:
X^2=X+1
解得
X1=(1+√5)/2, X2=(1-√5)/2.

则F(n)=C1*X1^n + C2*X2^n
∵F(1)=F(2)=1
∴C1*X1 + C2*X2
      C1*X1^2 + C2*X2^2
解得C1=1/√5,C2=-1/√5

∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】

通项公式的推导方法二:普通方法

设常数r,s
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
则r+s=1, -rs=1

n≥3时,有
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]
……
F(3)-r*F(2)=s*[F(2)-r*F(1)]

将以上n-2个式子相乘,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]
∵s=1-r,F(1)=F(2)=1
上式可化简得:
F(n)=s^(n-1)+r*F(n-1) 

那么:
F(n)=s^(n-1)+r*F(n-1)
= s^(n-1) + r*s^(n-2) + r^2*F(n-2)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)
……
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)
(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的
等比数列的各项的和)
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)
=(s^n - r^n)/(s-r)

r+s=1, -rs=1的一解为 s=(1+√5)/2, r=(1-√5)/2
则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}

斐波那契数列与卡特兰数

斐波那契数列        斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故...
  • baidu_35643793
  • baidu_35643793
  • 2016-10-27 09:57:15
  • 1054

HDOJ 1568 Fibonacci(斐波那契通项公式+取对数)

Fibonacci Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...
  • zwj1452267376
  • zwj1452267376
  • 2016-01-10 04:33:59
  • 988

暴力得出数列的通项公式

#include using namespace std; long long f[]={0, 1, 1, 2, 8, 18, 59, 155, 460, 1276, 3672, 10357, 29...
  • zyxyzz
  • zyxyzz
  • 2017-10-12 02:03:11
  • 1027

斐波那挈数列通项公式的推导

【斐波那挈数列通项公式的推导】[编辑本段]斐波那契数列:1,1,2,3,5,8,13,21…… 如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:F(1)=F(2)=1,F(n)...
  • zjgsucqf
  • zjgsucqf
  • 2010-05-24 08:23:00
  • 696

利用数列对应的生成函数求解数列的通项式

利用数列对应的生成函数求解数列的通项式 参考资料: 《数学女孩》 ----结城浩...
  • lz0499
  • lz0499
  • 2017-05-07 14:35:20
  • 888

斐波那契数列通项公式

/* 斐波那契数列通项公式 fib[n]=(1/√5) * [((1+√5)/2)^n-((1-√5)/2)^n](n=1,2,3.....) */ /* eg: 输出斐波那契数前4位数(数据范围n...
  • qq_15015129
  • qq_15015129
  • 2016-09-16 15:39:17
  • 950

线性代数求解递推形式数列的通项公式

以前学习矩阵知识的时候,一直觉得在玩数学游戏,没有多少真实的应用,但此次解决实际的问题时,方显得矩阵的强大,其实还可以使用其他方式进行通项推导,但此方法是最简洁、最漂亮的,原来数学还是很有用的! ...
  • wdq347
  • wdq347
  • 2013-05-13 10:57:55
  • 1795

卡特兰数已知递推序列求通项

转自:http://blog.csdn.net/dlyme/article/details/2532831   【Catalan数——卡特兰数】 一.Catalan数的定义令h(1)=1,Cat...
  • hemeinvyiqiluoben
  • hemeinvyiqiluoben
  • 2013-09-07 15:18:14
  • 4191

斐波那契数列时间复杂度和通项公式的一些记录

真没啥好说的QAQ。但是前阵子公司的技术BOSS和咱纠结这个数列的一些问题,于是我只好记录一下一些东西,表示自己还是学到了一点东西滴~        话说真查便发现这玩意鼎鼎大名无处不在,反正我高数...
  • woodenhouse
  • woodenhouse
  • 2012-10-08 19:52:39
  • 2817

菲波拉契数列的通项公式

菲波拉契数列的通项公式– F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n} ;题目;hdu—-1568; http://acm.hdu.edu.cn/show...
  • zw1996
  • zw1996
  • 2016-08-08 16:06:26
  • 250
收藏助手
不良信息举报
您举报文章:斐波纳契数列的通项公式
举报原因:
原因补充:

(最多只允许输入30个字)