今日小结——20190417(工厂采集数据+TF训练MNIST数据集尝试+论文)

一、JL采集数据

发现的问题:光源和目标物体有很严重的反光现象,需要设计光源来避免反光

                      目标物体太大,需要考虑如何分区采集图像数据的区域,例如划分成几块来采集

                      好消息是缺陷种类从20多种变成3钟,分类上简单了,但是每种缺陷识别难度加大了,mm级

                     数据采集使用离线的一批目标物体,但是几百件抽一件会导致采集效率很低,总不能每天过去采集吧,,,,

二、TF训练MNIST数据集尝试

以前学了一部分深度学习的知识,再上次的图像语义分割比赛中首次尝试,但是仅限于调用成熟的网络模型,没有自己从头去模拟整个训练过程,我觉得如果想在这个方向发展,必须去了解底层机制,所以打算借用常用的MNIST数据集,而且比较小。

首先需要了解的是,在神经网络的结构上,深度学习一方面要使用激活函数实现神经网络模型的去线性化,另一方面需要用一个或者多个隐藏层使得神经网络的结构更深,以解决复杂的问题。在训练时,还需要记住学习率的调整,使用正则化来避免过度拟合,使用滑动平滑模型来使得最终模型更加健壮!

1.常规导入+全局参数设置

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

INPUT_NODE = 784     # 输入节点
OUTPUT_NODE = 10     # 输出节点
LAYER1_NODE = 500    # 隐藏层数       
                              
BATCH_SIZE = 100     # 每次batch打包的样本个数        

# 模型相关的参数
LEARNING_RATE_BASE = 0.8      
LEARNING_RATE_DECAY = 0.99    
REGULARAZTION_RATE = 0.0001   
TRAINING_STEPS = 5000        
MOVING_AVERAGE_DECAY = 0.99  

输入层的节点数,其实相当于数据集的图片像素

输出节点数,相当于需要进行分类的类别数,比如我使用的MNIST数据集,那么需要分的类别就是0-9总共10类

隐藏层节点数,初学使用了一层,然后设置为500节点

 BATCH_SIZE越大,训练越接近确定的梯度下降,越小越接近随机梯度下降,也就是说,越小越难设置统一的学习率,也很容易得到不收敛的模型,但是训练速度快。。。所以设置一个min_batch_size也不容易

后面参数和命名一样,没啥分析了。

2.计算前向传播结果(激活函数用ReLU)

def inference(input_tensor, avg_class, weights1, biases1, weights2, biases2):
    # 不使用滑动平均类
    if avg_class == None:
        layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1)
        return tf.matmul(layer1, weights2) + biases2

    else:
        # 使用滑动平均类
        layer1 = tf.nn.relu(tf.matmul(input_tensor, avg_class.average(weights1)) + avg_class.average(biases1))
        return tf.matmul(layer1, avg_class.average(weights2)) + avg_class.average(biases2) 

 这个函数主要是给定神经网络的输入,计算了隐藏层的前向传播结果,使用了ReLU函数

 layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1)

ReLU激活函数在此处的作用是去线性化,这里没有使用softmax层,是因为这里是预测,预测时使用不同类别对应节点输出值的相对大小,木有影响!

这里是做一个滑动平均模型的比较,如果使用该模型会不会有更好的效果呢?答案是肯定的,因为滑动平均模型要设置衰减率,然后再训练初期更新会很快,接近最优解的时候会变慢,主要是通过衰减率的变化来实现幅度变化的。

3.训练猪蹄函数

def train(mnist):
    x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
    y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')
    # 生成隐藏层的参数。
    weights1 = tf.Variable(tf.truncated_normal([INPUT_NODE, LAYER1_NODE], stddev=0.1))
    biases1 = tf.Variable(tf.constant(0.1, shape=[LAYER1_NODE]))
    # 生成输出层的参数。
    weights2 = tf.Variable(tf.truncated_normal([LAYER1_NODE, OUTPUT_NODE], stddev=0.1))
    biases2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE]))

    # 计算不含滑动平均类的前向传播结果
    y = inference(x, None, weights1, biases1, weights2, biases2)
    
    # 定义训练轮数及相关的滑动平均类 
    global_step = tf.Variable(0, trainable=False)
    variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
    variables_averages_op = variable_averages.apply(tf.trainable_variables())
    average_y = inference(x, variable_averages, weights1, biases1, weights2, biases2)
    
    # 计算交叉熵及其平均值
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
    cross_entropy_mean = tf.reduce_mean(cross_entropy)
    
    # 损失函数的计算
    regularizer = tf.contrib.layers.l2_regularizer(REGULARAZTION_RATE)
    regularaztion = regularizer(weights1) + regularizer(weights2)
    loss = cross_entropy_mean + regularaztion
    
    # 设置指数衰减的学习率。
    learning_rate = tf.train.exponential_decay(
        LEARNING_RATE_BASE,
        global_step,
        mnist.train.num_examples / BATCH_SIZE,
        LEARNING_RATE_DECAY,
        staircase=True)
    
    # 优化损失函数
    train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)
    
    # 反向传播更新参数和更新每一个参数的滑动平均值
    with tf.control_dependencies([train_step, variables_averages_op]):
        train_op = tf.no_op(name='train')

    # 计算正确率
    correct_prediction = tf.equal(tf.argmax(average_y, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    
    # 初始化会话,并开始训练过程。
    with tf.Session() as sess:
        tf.global_variables_initializer().run()
        validate_feed = {x: mnist.validation.images, y_: mnist.validation.labels}
        test_feed = {x: mnist.test.images, y_: mnist.test.labels} 
        
        # 循环的训练神经网络。
        for i in range(TRAINING_STEPS):
            if i % 1000 == 0:
                validate_acc = sess.run(accuracy, feed_dict=validate_feed)
                print("After %d training step(s), validation accuracy using average model is %g " % (i, validate_acc))
            
            xs,ys=mnist.train.next_batch(BATCH_SIZE)
            sess.run(train_op,feed_dict={x:xs,y_:ys})

        test_acc=sess.run(accuracy,feed_dict=test_feed)
        print(("After %d training step(s), test accuracy using average model is %g" %(TRAINING_STEPS, test_acc)))

首先使用x y_分别定义输入和输出的参数

然后定义隐藏层的W和b,输出层的W和b

 分别计算不包括和包括滑动平均模型的前向传播结果y和average_y,而且定义储存训练轮数的变量,方便终端实时观测,但是一定要设置为不可训练,因为他仅仅是一个储存量: global_step = tf.Variable(0, trainable=False)

然后进行滑动平均类的初始化,然后再所有神经网络变量上使用滑动平均:variables_averages_op = variable_averages.apply(tf.trainable_variables())

接下来计算交叉熵,这个量的计算很有必要,因为这个量是用来刻画预测值与真实值之间差距的损失函数。

 然后计算正则化损失函数,一般只计算神经网路边上权重的正则化损失,而不是用偏置项!总损失等于交叉熵损失和正则化损失的和,设置一波学习率,这个没啥说的后面进行标准的优化函数

这里要注意的是,在训练神经网络的时候,每次过一遍数据既要通过反向传播来更新神经网络中的参数,又要更新每一个参数的滑动平均值!

 tf.argmax(average_y, 1)计算每一个样例的预测答案,其中average_y是一个batch_size*10的二维数组,每一行表示一个样例的前向传播结果,这个函数的结果是在average_y的每一行选取最大值对应的下标,返回一维数组,这样结果的值就表示了每一个样例对应的数字识别结果~

 validate_feed = {x: mnist.validation.images, y_: mnist.validation.labels} 这里是准备验证数据,取得是MNIST数据集的images和lables

迭代神经网络,每1000轮输出一次测试结果,训练结束就在测试数据集上检测神经网络的准确率,最后通过输出发现,还是很准确的嘛

 

 三、论文

嘻嘻嘻,这个论文参考价值非常高,起码光源部分就是个突破点!

 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值