前缀和与差分

一维前缀和

前缀和的思想很常用,当我们需要对一段数列多次求其和的时候,就可以简少运算次数,使得O(n*n)的时间复杂度转化为O(n),前缀和有一个常用递归代码

for(int i=1;i<=n;i++){

    s[i]=s[i]+s[i-1];
}

s[i]代表的是每一段从0加到i的和,所以要求一段子序列的和就会变得很简单

一维差分

差分被称为是前缀和的逆运算,因为差分求的是前一个数与后一个数的差,常用于要对一段序列进行增减的运算可以大大减少时间复杂度。

for(int i=1;i<=n;i++){
    s[i]=s[i]-s[i-1];
}

 二维前缀和

从为前缀和推导而来。如二维前缀和s[i][j]指的是从(1,1)到(i,j)的和;这里给一个例题洛谷p2004

#include<cstdio>
#include<iostream>
using namespace std;
const int N = 1e3 + 5;
long long q[N][N];
int main() {
	int n, m, c;
	cin >> n >> m >> c;
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= m; j++) {
			cin >> q[i][j];
			q[i][j] = q[i][j] + q[i - 1][j] + q[i][j - 1] - q[i - 1][j - 1];//求前缀和

		}
	}
	int ans = -1999999;
	int k, l;
	for (int i = 1; i <= n ; i++) {
		int x = i + c - 1;
		if (x > n)break;
		for (int j = 1; j <= m; j++) {
			int y = j + c - 1;
			if (y > m)break;
			int aa = q[x][y] - q[i - 1][y] - q[x][j - 1] + q[i - 1][j - 1];//关键求一段
			if (aa > ans) {
				ans = aa;
				k = i;
				l = j;
			}
		}
	}
	cout << k << " " << l << endl;
	return 0;

}

这里给个图理解一下

 二维差分

同样的,是二维前缀和的反例,也同样给一道例题

#include<iostream>
#include<cstdio>
using namespace std;
int s[1000][1000] = { 0 };
int main() {
	int n, m;
	cin >> n >> m;
	while (m--) {
		int a, b, c, d;
		cin >> a >> b >>c >> d;
		s[a][b]++;
		s[a][d + 1]--;
		s[c + 1][b]--;
		s[c + 1][d + 1]++;
	}
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= n; j++) {
			s[i][j] += s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1];
		}
	}
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= n; j++) {
			printf("%d ", s[i][j]);
		}
		printf("\n");
	}
	return 0;
}

洛谷p5542

小结

差分的值就等于自己-左边-上边+左上角 ,二维前缀和等于自己+左边+上边-左上角

而对俩坐标内的数据进行改变,则如图所示,左上角++,右下角++,左下边--,右上边--

而要求二维前缀和的差距,则和

图中所示。 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值