PythonStock(9):使用优矿uqer.io 进行简单的数据分析

版权声明:本文为博主原创文章,未经博主允许不得转载。博主地址:http://blog.csdn.net/freewebsys https://blog.csdn.net/freewebsys/article/details/78291346

前言


使用Python开发一个股票项目。
项目地址:
https://github.com/pythonstock/stock
相关资料:
http://blog.csdn.net/freewebsys/article/category/7076584
主要使用开发语言是python。
使用的lib库是pandas,tushare,TensorFlow,tornado等。

本文的原文连接是: http://blog.csdn.net/freewebsys/article/details/78291346
未经博主允许不得转载。
博主地址是:http://blog.csdn.net/freewebsys

1,研究股票数据


参考下python处理股票市场数据:

英文版:

An Introduction to Stock Market Data Analysis with Python (Part 1)
https://ntguardian.wordpress.com/2016/09/19/introduction-stock-market-data-python-1/
An Introduction to Stock Market Data Analysis with Python (Part 2)
https://ntguardian.wordpress.com/2016/09/26/introduction-stock-market-data-python-2/

中文版:

Python股市数据分析教程——学会它,或可以实现半“智能”炒股 (Part 1)
https://yq.aliyun.com/articles/66878
Python股市数据分析教程——学会它,或可以实现半“智能”炒股 (Part 2)
https://yq.aliyun.com/articles/66817

发现这个代码是基于 yahoo 财经的很就以前的代码根本不能运行。
所以跑起来没有啥意义。
于是研究使用 优矿 api 进行下简单的数据分析。

2,代码实现:


import pandas as pd
import pandas.io.data as web
import matplotlib.pyplot as plt
import datetime
import numpy as np

start = datetime.datetime(2016, 1, 1)
end = datetime.date.today() - datetime.timedelta(days=1)  # yesterday .

# IOError Traceback (most recent call last)
# apple = web.DataReader("AAPL", "yahoo", start, end)

# 以【平安银行】为例:
out_data = DataAPI.MktEqudGet(secID=u"000001.XSHE", beginDate=start, endDate=end, pandas="1")
print(start, end)

# openPrice float   今开盘
# highestPrice  float   最高价
# lowestPrice   float   最低价
# closePrice    float   今收盘
# turnoverVol   float   成交量
# turnoverValue float   成交金额
# dealAmount    int 成交笔数
# turnoverRate  float   日换手率
# 重新设置 index 和数据。
out_data = pd.DataFrame({
    "openPrice": out_data["openPrice"].values,
    "highestPrice": out_data["highestPrice"].values,
    "lowestPrice": out_data["lowestPrice"].values,
    "closePrice": out_data["closePrice"].values,
    "turnoverVol": out_data["turnoverVol"].values,
    "turnoverValue": out_data["turnoverValue"].values,
    "dealAmount": out_data["dealAmount"].values,
    "turnoverRate": out_data["turnoverRate"].values
},
    index=out_data["tradeDate"].values)

print("####### len:", len(out_data))
figsiz_all = (18, 4)
# .subplots(1, 3, figsize=(9, 3), sharey=True) plt.figure()
out_data["closePrice"].plot(grid=True, figsize=figsiz_all, title="closePrice")

####################### 计算今日收盘价回归 #######################
plt.figure()  # 在新创建一个图表。
out_data["return"] = np.log(out_data["closePrice"] / out_data["closePrice"].shift(1))
# print(out_data.head())
out_data["return"].plot(grid=True, figsize=figsiz_all, title="closePrice return")

####################### 计算今日收盘价波动 #######################
out_data["25d"] = pd.rolling_mean(out_data["closePrice"], window=25)
out_data["50d"] = pd.rolling_mean(out_data["closePrice"], window=50)
print(out_data.head(n=2))
plt.figure()  # 在新创建一个图表。
out_data[["closePrice", "25d", "50d"]].plot(grid=True, figsize=figsiz_all, title="25d 50d")

其中使用api DataAPI.MktEqudGet 获得的是平安银行(000001.XSHE)的股票数据。
相关的参数说明:
https://uqer.io/data/browse/0/?page=1
输入开始时间,结束时间。返回的是一个python pandas 的 dataFrame 对象。

使用

out_data["return"] = np.log(out_data["closePrice"] / out_data["closePrice"].shift(1))

用【今日收盘价格】/ 【昨天收盘价格】得出的一个回归值。

使用

out_data["25d"] = pd.rolling_mean(out_data["closePrice"], window=25)
out_data["50d"] = pd.rolling_mean(out_data["closePrice"], window=50)

计算移动平均线25日的和50日的。

计算结果展示:

3,总结


pandas 处理股票数据,还是非常的方便的。
可以对数据进行计算。同时使用plt 将图形可视化。
同时在 uqer.io 上面进行测试方便了很多。
但是由于 uqer.io 上面不能进行数据的存储(需要pro版本),只能计算。
但是也有好处,可以模拟进行实施交易。测试自己的算法思路呢。
接下来研究 tushare 报表展示。uqer.io 上面用的lib库还不是很全面。
有很多自己的api,各有利弊吧。

本文的原文连接是: http://blog.csdn.net/freewebsys/article/details/78291346
未经博主允许不得转载。
博主地址是:http://blog.csdn.net/freewebsys

展开阅读全文

没有更多推荐了,返回首页