kaggle课程(六)Feature Engineering特征工程 在建模前对数据进行处理、转换、筛选的工作被称为特征工程(Feature Engineering),其本质上是对原始数据的再加工,目的是产生进入模型的特征。一、Baseline Model基准模型
kaggle课程(五)Panda 一、基础学习creating, reading and writing1. Creatingpandas有两个主要的对象:DataFrame和Series.DataFrame:import pandas as pdpd.DataFrame({'Bob': ['I liked it.', 'It was awful.'], 'Sue': ['Pretty go...
Kaggle课程(四)Data Visualization fifa_data = pd.read_csv(fifa_filepath, index_col="Date", parse_dates=True)# Set the width and height of the figureplt.figure(figsize=(16,6))# Line chart showing how FIFA rankings evolved over tim...
Kaggle课程(三)Intermediate Machine Learning 一、Missing Values1.set upimport pandas as pdfrom sklearn.model_selection import train_test_split# Read the dataX_full = pd.read_csv('../input/train.csv', index_col='Id')X_test_full = pd.read_csv...
kaggle课程(二)Intro to Machine Learning 一、Your First Machine Learning Model# Code you have previously used to load dataimport pandas as pd# 加载数据iowa_file_path = '../input/home-data-for-ml-course/train.csv'home_data = pd.read_csv(iowa...
kaggle课程(一)python学习 一、python学习:1.2.布尔类型的变量可以直接做加减乘除法。python会隐式的进行整数转换:eg.return (ketchup + mustard + onion) == 13.列表中的最后一个数可以用-1来索引...
吴恩达深度学习笔记04——卷积神经网络4特殊应用 人脸识别人脸验证(Face Verification)和人脸识别(Face Recognition)的区别:人脸验证:一般指一个一对一问题,只需要验证输入的人脸图像是否与某个已知的身份信息对应;人脸识别:一个更为复杂的一对多问题,需要验证输入的人脸图像是否与多个已知身份信息中的某一个匹配。一般来说,由于需要匹配的身份信息更多导致错误率增加,人脸识别比人脸验证更难一些。...
吴恩达深度学习笔记04——卷积神经网络3目标检测 目标检测是计算机视觉领域中一个新兴的应用方向,其任务是对输入图像进行分类的同时,检测图像中是否包含某些目标,并对他们准确定位并标识。一、目标定位定位分类问题不仅要求判断出图片中物体的种类,还要在图片中标记出它的具体位置,用边框(Bounding Box,或者称包围盒)把物体圈起来。一般来说,定位分类问题通常只有一个较大的对象位于图片中间位置;而在目标检测问题中,图片可以含有多个对象,甚至单张图...
吴恩达深度学习笔记04——卷积神经网络2深度卷积网络:实例探究 这期会讲解一些经典实例,包括:LeNet-5AlexNetVGG此外还有 ResNet(Residual Network,残差网络),以及 Inception Neural Network。一、经典网络1、LeNet-5特点:LeNet-5 针对灰度图像而训练,因此输入图片的通道数为 1。该模型总共包含了约 6 万个参数,远少于标准神经网络所需。典型的 LeNet-5 ...
吴恩达深度学习笔记04——卷积神经网络1 一、计算机视觉计算机视觉(Computer Vision)的高速发展标志着新型应用产生的可能,例如自动驾驶、人脸识别、创造新的艺术风格。人们对于计算机视觉的研究也催生了很多机算机视觉与其他领域的交叉成果。一般的计算机视觉问题包括以下几类:图片分类(Image Classification);目标检测(Object detection);神经风格转换(NeuralStyle Transf...
吴恩达深度学习笔记03——结构化机器学习项目2 一、错误分析通过人工检查机器学习模型得出的结果中出现的一些错误,有助于深入了解下一步要进行的工作。这个过程被称作错误分析(Error Analysis)。例如,你可能会发现一个猫图片识别器错误地将一些看上去像猫的狗误识别为猫。这时,立即盲目地去研究一个能够精确识别出狗的算法不一定是最好的选择,因为我们不知道这样做会对提高分类器的准确率有多大的帮助。这时,我们可以从分类错误的样本中统计出狗的样...
吴恩达深度学习笔记03——结构化机器学习项目1 对于一个已经被构建好且产生初步结果的机器学习系统,为了能使结果更令人满意,往往还要进行大量的改进。鉴于之前的课程介绍了多种改进的方法,例如收集更多数据、调试超参数、调整神经网络的大小或结构、采用不同的优化算法、进行正则化等等,我们有可能浪费大量时间在一条错误的改进路线上。想要找准改进的方向,使一个机器学习系统更快更有效地工作,就需要学习一些在构建机器学习系统时常用到的策略。一、正交化正交化(...
吴恩达深度学习笔记02——改善深层神经网络3超参数调试 一、超参数调试处理1、重要程度排序目前已经讲到过的超参数中,重要程度依次是:最重要:学习率 α;其次重要:β:动量衰减参数,常设置为 0.9;#hidden units:各隐藏层神经元个数;mini-batch 的大小;再次重要:β1,β2,ϵ:Adam 优化算法的超参数,常设为 0.9、0.999、10−8;#layers:神经网络层数;decay_rate:...
吴恩达深度学习笔记02——改善深层神经网络2优化算法 深度学习难以在大数据领域发挥最大效果的一个原因是,在巨大的数据集基础上进行训练速度很慢。而优化算法能够帮助快速训练模型,大大提高效率。一、batch 梯度下降法batch 梯度下降法(批梯度下降法,我们之前一直使用的梯度下降法)是最常用的梯度下降形式,即同时处理整个训练集。其在更新参数时使用所有的样本来进行更新。对整个训练集进行梯度下降法的时候,我们必须处理整个训练数据集,然后才能进行一步梯...
吴恩达深度学习笔记02——改善深层神经网络1深度学习的实用层面 一、数据划分:训练 / 验证 / 测试集应用深度学习是一个典型的迭代过程。对于一个需要解决的问题的样本数据,在建立模型的过程中,数据会被划分为以下几个部分:训练集(train set):用训练集对算法或模型进行训练过程;验证集(development set):利用验证集(又称为简单交叉验证集,hold-out cross validation set)进行交叉验证,选择出最好的模型;...
吴恩达深度学习笔记01——神经网络和深度学习3深层神经网络 一、深层网络中的前向和反向传播1、前向传播2、反向传播3、搭建深层神经网络块神经网络的一步训练(一个梯度下降循环),包含了从 a[0](即 x)经过一系列正向传播计算得到 y^ (即 a[l])。然后再计算 da[l],开始实现反向传播,用链式法则得到所有的导数项,W 和 b 也会在每一层被更新。在代码实现时,可以将正向传播过程中计算出来的 z 值缓存下来,待到反向传播计算时使用。...
吴恩达深度学习笔记01——神经网络和深度学习2浅层神经网络 一、神经网络表示竖向堆叠起来的输入特征被称作神经网络的输入层(the input layer)。神经网络的隐藏层(a hidden layer)。“隐藏”的含义是在训练集中,这些中间节点的真正数值是无法看到的。输出层(the output layer)负责输出预测值。如图是一个双层神经网络,也称作单隐层神经网络(a single hidden layer neural network)。...
吴恩达深度学习笔记01——神经网络和深度学习1 实现一个神经网络时,如果需要遍历整个训练集,并不需要直接使用 for 循环。神经网络的计算过程中,通常有一个正向过程(forward pass)或者叫正向传播步骤(forward propagation step),接着会有一个反向过程(backward pass)或者叫反向传播步骤(backward propagation step)。一、Logistic 回归Logistic 回归是...
吴恩达机器学习笔记(12)——降维(Dimensionality Reduction) 这里介绍第二种无监督学习方法,叫做降维(Dimensionality Reduction)一、目标1:数据压缩Data Compression由于可能存在许多冗余特征量,或者说特征高度相关,所以需要减少特征量的数量。so如果允许我们通过投影这条绿线上所有的原始样本,来近似原始的数据集,那么我只需要用一个数就能表示每个训练样本的位置,这样就能把内存的需求减半,同时这将允许我们的学习算法运行的...