一、模型描述
上一章已经通过卖房价格的模型简单介绍了什么是回归:我们尝试将变量映射到某一个连续函数上。
这章我们将这个问题简单地量化为单变量线性回归模型(Univariate linear regression)来理解它。
PS:监督学习最常见的两类问题:
1、回归:预测一个具体的数值输出
2、分类:预测离散值输出
先来看这个过程是如何进行的:
其中,h表示假设函数:
θ是参数,下一节我们谈谈如何选择这两个参数值。
二、代价函数(Cost function)
我们现在有了数据集,并且可以通过改变参数来调整h函数,那么,我们如何定义什么是“更好”的h函数呢?
一般而言,我们通过调整θ,使得所有训练集数据与其拟合数据的差的平方和更小,即认为得到了拟合度更好的函数。
我们引入了代