吴恩达机器学习笔记(2)——单变量线性回归(Univariate linear regression)

本文介绍了单变量线性回归模型,包括模型描述、代价函数和梯度下降方法。通过最小化代价函数J,利用梯度下降算法找到最佳参数θ,以实现对数据的最佳拟合。线性回归的代价函数在梯度下降中迭代求解,确保找到全局最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、模型描述

上一章已经通过卖房价格的模型简单介绍了什么是回归:我们尝试将变量映射到某一个连续函数上。
这里写图片描述
这章我们将这个问题简单地量化为单变量线性回归模型(Univariate linear regression)来理解它。

PS:监督学习最常见的两类问题:
1、回归:预测一个具体的数值输出
2、分类:预测离散值输出

先来看这个过程是如何进行的:
这里写图片描述
其中,h表示假设函数:
这里写图片描述
θ是参数,下一节我们谈谈如何选择这两个参数值。




二、代价函数(Cost function)

我们现在有了数据集,并且可以通过改变参数来调整h函数,那么,我们如何定义什么是“更好”的h函数呢?
一般而言,我们通过调整θ,使得所有训练集数据与其拟合数据的差的平方和更小,即认为得到了拟合度更好的函数。

我们引入了代

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值