图论

本文深入探讨了图论中的核心算法,包括Floyd、Dijkstra、SPFA,并通过具体的在线判题平台(如BZOJ)上的题目进行实战解析。文章还涉及到了最小生成树、最大生成树、二分图等概念,对于不离散化的处理方法也有所提及,适合图论初学者和进阶者阅读。
摘要由CSDN通过智能技术生成

floyd
dijstra
spfa
bzoj1001

浅析最大最小定理在信息学竞赛中的应用
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#define MAXN 2000001
#define INF   (~0U>>1)
#define F(i,j,n)   for(int i=j;i<=n;i++)
#include<queue>
#include<vector>

using namespace std;
vector<int>edge[MAXN],weight[MAXN];
bool vst[MAXN];
int n,m,x,t,dis[MAXN];
struct Heapnode
{
    int dist,num;
    bool operator <(const Heapnode & x)const{
        return dist>x.dist;
    }
};

void solve()
{
    int x=max(n,m);
    int p,minn=INF;
    F(i,1,x-1)
    {
        scanf("%d",&p);
        minn=min(p,minn);
    }
    if(minn==INF) minn=0;
    printf("%d\n",minn);
    return ;
}
priority_queue<Heapnode> Q;

int main()
{
    scanf("%d%d",&n,&m);
    if(n==1||m==1)
    {
        solve();
        return 0;
    }
    t=(n-1)*(m-1)*2+1;
    F(i,1,n)
        F(j,1,m-1)
        {
            scanf("%d",&x);
            if(i==1)
            {
                edge[t].push_back(2*j);
                weight[t].push_back(x);
                edge[2*j].push_back(t);
                weight[2*j].push_back(x);
            }

            if(i==n)
            {
                int p=2*(n-2)*(m-1)+2*j-1;
                edge[0].push_back(p);
                weight[0].push_back(x);
                edge[p].push_back(0);
                weight[p].push_back(x);
            }
            if(i<n&&i>1)
            {
                int p=2*(m-1)*(i-1)+2*j;
                int q=2*(m-1)*(i-2)+2*j-1;
                edge[p].push_back(q);
                weight[p].push_back(x);
                edge[q].push_back(p);
                weight[q].push_back(x);
            }


        }
        F(i,1,n-1)
            F(j,1,m)
            {
                scanf("%d",&x);
                if(j==1)
                {
                    int p=2*(m-1)*(i-1)+1;
                    edge[0].push_back(p);
                    weight[0].push_back(x);
                    edge[p].push_back(0);
                    weight[p].push_back(x);
                }
                if(j==m)
                {
                    int p=2*(m-1)*i;
                    edge[t].push_back(p);
                    weight[t].push_back(x);
                    edge[p].push_back(t);
                    weight[p].push_back(x);
                }
                if(j>1&&j<m)
                {
                    int p=2*(m-1)*(i-1)+2*(j-1);
                    edge[p].push_back(p+1);
                    weight[p].push_back(x);
                    edge[p+1].push_back(p);
                    weight[p+1].push_back(x);
                }
            }
    F(i,1,n-1)
        F(j,1,m-1)
        {
            scanf("%d",&x);
            int p=2*(m-1)*(i-1)+2*j-1;
            edge[p].push_back(p+1);
            weight[p].push_back(x);
            edge[p+1].push_back(p);
            weight[p+1].push_back(x);
        }
    F(i,1,t) dis[i]=INF;
    dis[0]=0;
    memset(vst,false,sizeof(vst));
    Q.push((Heapnode){0,0});
    while(!Q.empty())
    {
        Heapnode x=Q.top();
        Q.pop();
        if(vst[x.num]) continue;
        vst[x.num]=true;
        for(int i=0;i<edge[x.num].size();i++)
        {
            if(dis[edge[x.num][i]]>dis[x.num]+weight[x.num][i])
            {
                dis[edge[x.num][i]]=dis[x.num]+weight[x.num][i];
                Q.push((Heapnode){dis[edge[x.num][i]],edge[x.num][i]});
            }
        }
    }
    printf("%d\n",dis[t]);
    return 0;
}



bzoj1726

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
#define F(i,j,n) for(int i=j;i<=n;i++)
#define inf  (~0U>>1)
using namespace std;
inline int read()
{
    int num=0,f=1;
    char ch=getchar();
    while(ch<'0'||ch>'9'){
        if(ch=='-') f=-1;
        ch=getchar();
    }
    while(ch<='9'&&ch>='0'){
        num=num*10+ch-'0';
        ch=getchar();
    }
    return num;
}
int m,n,d,head[5005],cnt;
int dis[5005][2];
int tmp,ans=inf;
int a,b,x;
bool v[5005];
struct edge{
    int f,t,l;  
}e[200005];
queue<int> Q;
void add(int f,int t,int l)
{
    e[++cnt].f=head[f];
    e[cnt].t=t;
    e[cnt].l=l;
    head[f]=cnt;
}
void spfa(int start,int num)
{
    memset(v,0,sizeof(v));
    dis[start][num]=0;
    Q.push(start);
    v[start]=1;
    while(!Q.empty()){
        int y=Q.front();
        Q.pop();
        v[y]=0;
        for(int i=head[y];i;i=e[i].f){
            if(dis[e[i].t][num]>dis[y][num]+e[i].l)
            {
                dis[e[i].t][num]=dis[y][num]+e[i].l;
                if(!v[e[i].t])
                {
                    Q.push(e[i].t);
                    v[e[i].t]=1;
                }
            }
        }   
    }
}
int main()
{
    memset(dis,0x7f,sizeof(dis));
    n=read();
    m=read();
    for(int i=1;i<=m;i++){
        a=read();
        b=read();
        x=read();
        add(a,b,x);
        add(b,a,x);
    }
    spfa(1,0);
    spfa(n,1);
    F(i,1,n) for(int j=head[i];j;j=e[j].f){
        tmp=dis[i][0]+dis[e[j].t][1]+e[j].l;
        if(tmp>dis[n][0]&&tmp<ans) ans=tmp;
    }   
    printf("%d\n",ans);
}

两次spfa分别从头和尾
之后枚举每一条边大于最小值的最小值

bzoj2763
分层图
bzoj1614
二分答案
silver
Claris说普及组
不离散化?
bzoj1774
最小生成树
bzoj3943
求最大生成树
bzoj1050
从小到大加边
bzoj3714
连边
最小生成树
bzoj4554
二分图
什么都不会QwQ
bzoj 1529
裸题,卡内存
bzoj1051奇怪
bzoj1093
dag找点权值最大
拓扑排序

技术选型 【后端】:Java 【框架】:springboot 【前端】:vue 【JDK版本】:JDK1.8 【服务器】:tomcat7+ 【数据库】:mysql 5.7+ 项目包含前后台完整源码。 项目都经过严格调试,确保可以运行! 具体项目介绍可查看博主文章或私聊获取 助力学习实践,提升编程技能,快来获取这份宝贵的资源吧! 在当今快速发展的信息技术领域,技术选型是决定一个项目成功与否的重要因素之一。基于以下的技术栈,我们为您带来了一份完善且经过实践验证的项目资源,让您在学习和提升编程技能的道路上事半功倍。以下是该项目的技术选型和其组件的详细介绍。 在后端技术方面,我们选择了Java作为编程语言。Java以其稳健性、跨平台性和丰富的库支持,在企业级应用中处于领导地位。项目采用了流行的Spring Boot框架,这个框架以简化Java企业级开发而闻名。Spring Boot提供了简洁的配置方式、内置的嵌入式服务器支持以及强大的生态系统,使开发者能够更高效地构建和部署应用。 前端技术方面,我们使用了Vue.js,这是一个用于构建用户界面的渐进式JavaScript框架。Vue以其易上手、灵活和性能出色而受到开发者的青睐,它的组件化开发思想也有助于提高代码的复用性和可维护性。 项目的编译和运行环境选择了JDK 1.8。尽管Java已经推出了更新的版本,但JDK 1.8依旧是一种成熟且稳定的选择,广泛应用于各类项目中,确保了兼容性和稳定性。 在服务器方面,本项目部署在Tomcat 7+之上。Tomcat是Apache软件基金会下的一个开源Servlet容器,也是应用最为广泛的Java Web服务器之一。其稳定性和可靠的性能表现为Java Web应用提供了坚实的支持。 数据库方面,我们采用了MySQL 5.7+。MySQL是一种高效、可靠且使用广泛的关系型数据库管理系统,5.7版本在性能和功能上都有显著的提升。 值得一提的是,该项目包含了前后台的完整源码,并经过严格调试,确保可以顺利运行。通过项目的学习和实践,您将能更好地掌握从后端到前端的完整开发流程,提升自己的编程技能。欢迎参考博主的详细文章或私信获取更多信息,利用这一宝贵资源来推进您的技术成长之路!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值