图论知识目录

图论知识汇总

——原创作者:青年有志

🎉 博主相信: 有足够的积累,并且一直在路上,就有无限的可能!!!

👨‍🎓个人主页: 青年有志的博客

💯 Gitee 源码地址:


序号
1第一章 图的基本概念详细介绍
2第二章 树详细介绍
3第三章 图的连通性详细介绍
4第三章 图的连通性详细介绍
5第四章 欧拉图与哈密尔顿图详细介绍
6第五章 匹配与因子分解详细介绍
7第六章 平面图详细介绍
8第七章 图的着色详细介绍
9第八章 Ramsey 定理详细介绍
10第九章 有向图详细介绍
11复习课件详细介绍
序号
1图论定理汇总(一)详细介绍
2图论定理汇总(二)详细介绍
3图论特殊结论(一)详细介绍
4图论特殊结论(二)详细介绍
5图论作业(一)详细介绍
6图论作业(二)详细介绍

第一章 图的基本概念——概念部分

序号符号说明
1 K n K_n Kn n n n阶完全图
2 K m , n K_{m, n} Km,n具有二分类 ( X , Y ) (X, Y) (X,Y) 的完全偶图, 其中 X X X的每个顶点与 Y Y Y的每个顶点相连, ∣ X ∣ = m , ∣ Y ∣ = n |X|=m,|Y|=n X=mY=n
3 H H H G G G 的补图,记为 H = G ‾ H=\overline{G} H=G
4 G ≅ G ‾ G\cong\overline{G} GG G G G是自补图, ≅ \cong 表示同构
5 δ ( G ) / δ δ(G)/δ δ(G)/δ G G G 的最小度
6 Δ ( G ) / Δ Δ(G)/Δ Δ(G) G G G 的最大度
7 d ( v ) d(v) d(v) G G G 的顶点 v v v 的度,即 G G G 中与 v v v 关联的边的数目
8 G [ V ′ ] \color{red}G\left[V^{\prime}\right] G[V] V ′ V^{\prime} V 为顶点集,以两个端点均在 V ′ V^{\prime} V 中的边集组成的图,点导出子图
9 G [ E ′ ] \color{red}G\left[E^{\prime}\right] G[E] E ′ E^{\prime} E 中边的所有端点为顶点集组成的图,称为图 G G G 的边导出子图
10 G − V ′ \color{red}G-V^{\prime} GV G G G中删去 V ′ V^{\prime} V 中的顶点和G中与之关联的所有边
11 G − v \color{red}G-v Gv如果只删去一个点 v v v,及其与之关联的边
12 G − E ′ \color{red}G - E^{\prime} GE G G G中删去 E ′ E^{\prime} E 中的所有边,产生的导出子图
13 G − e \color{red}G-e Ge只删去一条边 e e e,两边的顶点保留
14 G 1 ∪ G 2 G_1\cup G_2 G1G2 G 1 G_1 G1 G 2 G_2 G2并是指由 V ( G 1 ) ∪ V ( G 2 ) V\left(G_{1}\right)\cup V\left(G_{2}\right) V(G1)V(G2) 为顶点集,以 E ( G 1 ) ∪ E ( G 2 ) E (G_1)\cup E(G_2) E(G1)E(G2) 为边集组成的子图
15 G 1 + G 2 \color{red}G_1 + G_2 G1+G2如果 G 1 , G 2 G_1,G_2 G1,G2不相交(没有公共顶点),则 G 1 ∪ G 2 = G 1 + G 2 G_1\cup G_2 = G_1 + G_2 G1G2=G1+G2
16 G 1 ∩ G 2 \color{red}G_1\cap G_2 G1G2 G 1 G_1 G1 G 2 G_2 G2交是指由 V ( G 1 ) ∩ V ( G 2 ) V\left(G_{1}\right)\cap V\left(G_{2}\right) V(G1)V(G2) 为顶点集,以 E ( G 1 ) ∩ E ( G 2 ) E (G_1)\cap E(G_2) E(G1)E(G2) 为边集组成的子图
17 G 1 − G 2 \color{red}G_1-G_2 G1G2 G 1 G_1 G1 G 2 G_2 G2的差是指从 G 1 G_1 G1中删去 G 2 G_2 G2中的边得到的新图
18 G 1 Δ G 2 G_1\Delta G_2 G1ΔG2 G 1 G_1 G1 G 2 G_2 G2 的对称差, G 1 Δ G 2 = ( G 1 ∪ G 2 ) − ( G 1 ∩ G 2 ) G_1\Delta G_2=(G_1\cup G_2)-(G_1\cap G_2) G1ΔG2=(G1G2)(G1G2)
19 G 1 ∨ G 2 \color{red}G_1\vee G_2 G1G2 G 1 , G 2 G_1,G_2 G1,G2是两个不相交的图,作 G 1 + G 2 \color{red}G_1+G_2 G1+G2,并且将 G 1 G_1 G1中每个顶点和 G 2 G_2 G2中的每个顶点连接
20 G 1 × G 2 \color{red}G_1\times G_2 G1×G2 G 1 G_1 G1 G 2 G_2 G2的积图, ( u 1 = v 1 (u_1=v_1 (u1=v1 u 2 u_2 u2 adj v 2 ) v_2) v2) ( u 2 = v 2 (u_2=v_2 (u2=v2 u 1 u_1 u1 adj v 1 ) v_1) v1)
21 G 1 [  G  2 ] \color{red}G_1[\text{ G }_2] G1[ G 2] G 1 G_1 G1 G 2 G_2 G2的合成图, ( u 1 u_1 u1 adj v 1 ) v_1) v1) ( u 1 = v 1 (u_1=v_1 (u1=v1 u 2 u_2 u2 adj v 2 ) v_2) v2)
22 d ( u , v ) d(u, v) d(u,v) u u u v v v间最短路的长度称为 u u u v v v间距离
23 ω ( G ) \color{red}ω(G) ω(G) G G G的连通分支的个数,称为 G G G的分支数
24 d ( G ) d (G ) d(G)图G的直径
25 w ( e ) w(e) w(e)边的权值
26 A ( G ) = ( a i j ) A(G)=(a_{ij}) A(G)=(aij) G G G 的邻接矩阵 a i j = { l ,      v i 与  v j 间 边 数 0,      v i 和  v j 不 邻 接 a_{ij}=\begin{cases}l,~~~~v_i\text{与 }v_j\text{间 边 数}\\\textbf{0,}~~~~v_i\text{和 }v_j\text{不 邻 接}&\end{cases} aij={l,    vi vj  0,    vi vj  
27 M ( G ) = ( a i j ) n × m M(G)=(a_{ij})_{n\times m} M(G)=(aij)n×m G G G 的关联矩阵
28 f ( G , λ ) = ∣ λ E − A ∣ f(G,\lambda)=\left|\lambda E-A\right| f(G,λ)=λEA G G G的特征多项式
29 Λ ( G ) \Lambda\left(G\right) Λ(G)邻接代数
30 V = ⋃ i = 1 l V i , V i ∩ V j = Φ , i ≠ j \begin{aligned}V&=\bigcup_{i=1}^lV_i,V_i\cap V_j=\Phi,i\neq j\end{aligned} V=i=1lVi,ViVj=Φ,i=j所有的 V i V_i Vi非空, V i V_i Vi内的点均不邻接,称 G G G是一个 l l l 部图
31 T l , n T_{l, n} Tl,n n n n 阶完全 l l l 几乎等部图

第一章 图的基本概念——概念部分

名词概念
有限图顶点集和边集都有限的图称为有限图;
平凡图只有一个顶点而无边的图称为平凡图;其他所有的图都称为非平凡图
空图边集为空的图称为空图;
n阶图顶点数为n的图称为n阶图;
(n, m) 图顶点数为n,边数为m的图称为(n, m) 图;
边的重数连接两个相同顶点的边的条数称为边的重数;重数大于1的边称为重边;
端点重合为一点的边称为环;
简单图无环无重边的图称为简单图;其余的图称为复合图;
顶点u与v相邻接顶点u与v间有边相连接;其中u与v称为该边的两个端点;
顶点u与边e相关联顶点u是边e的端点;
e 1 e_1 e1与边 e 2 e_2 e2相邻接 e 1 e_1 e1与边 e 2 e_2 e2有公共端点;
孤立点不与任何边相关联的点;
自补图图G与其补图同构
k k k-正则图 G = ( V , E ) G = (V, E) G=(V,E)为简单图,如果对所有 v ∈ V v \in V vV,有 d ( v ) = k d(v) = k d(v)=k,
完全图和完全偶图 K n , n K_{n,n} Kn,n 均是正则图(n-1 正则图,所有 d ( v ) = n − 1 d(v) = n-1 d(v)=n1
途径(或通道或通路)一个有限非空序列 w = v 0 e 1 v 1 e 2 v 2 … e k v k \color{red}w= v_0 e_1 v_1 e_2 v_2…e_k v_k w=v0e1v1e2v2ekvk,它的项交替地为顶点和边 (点和边可重复)
边不重复的途径称为图的一条迹
顶点不重复的途径称为图的一条路。
闭途径、闭迹(回路)与圈起点与终点重合的途径、迹、路
k k k长度为 k k k的圈
奇圈 k k k为奇数
偶圈 k k k为偶数
l l l 部图简单图 G G G的点集 V V V有一个划分: V = ⋃ i = 1 l V i , V i ∩ V j = Φ , i ≠ j \begin{aligned}V&=\bigcup_{i=1}^lV_i,V_i\cap V_j=\Phi,i\neq j\end{aligned} V=i=1lVi,ViVj=Φ,i=j 且所有的 V i V_i Vi非空, V i V_i Vi内的点均不邻接
完全 l l l 部图如果在一个 l l l 部图 G G G中,任意部 V i V_i Vi中的每个顶点同 G G G中其它各部中的每个顶点均邻接
完全 l l l 几乎等部图如果在一个 n n n 个点的完全 l l l 部图 G G G 中有: n = k l + r , 0 ≤ r < l ∣ V 1 ∣ = ∣ V 2 ∣ = ⋯ = ∣ V r ∣ = k + 1 ∣ V r + 1 ∣ = ∣ V r + 2 ∣ = ⋯ = ∣ V l ∣ = k \begin{aligned}&n=kl+r,0\leq r<l\\&|V_1|=|V_2|=\cdots=|V_r|=k+1\\&|V_{r+1}|=|V_{r+2}|=\cdots=|V_l|=k\end{aligned} n=kl+r,0r<lV1=V2==Vr=k+1Vr+1=Vr+2==Vl=k
分支点内点和树根统称

References

https://lfool.github.io/LFool-Notes/

电子科技大学《图论及其应用》复习(史上最全汇总)

子科技大学《图论及其应用》复习总结–第一章 图的基本概念

电子科技大学研究生图论课程

B站视频 电子科技大学 图论及其应用-杨春

电子科技大学图论期末复习重点(杨春老师强调+往年期末卷子总结)

图论答案

图论定理罗列 ☆☆☆☆☆☆

《图论及其应用》期末复习汇总

图论(16)匈牙利算法与最优匹配算法

  • 24
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值