L1与L2正则的比较

L1和L2正则化是机器学习中防止过拟合的重要手段。L1正则化产生稀疏模型,适合特征选择,通过拉普拉斯分布产生角点,部分权重为0。L2正则化通过高斯分布,使权重趋向于0但不为0,保持模型平滑。L1常用于Lasso回归,L2用于Ridge回归,两者在损失函数中引入不同范数,调整模型复杂度。
摘要由CSDN通过智能技术生成

L 1 L1 L1 L 2 L2 L2正则的区别

正则化( R e g u l a r i z a t i o n Regularization Regularization) 是机器学习中对原始损失函数引入惩罚项,以防止过拟合或提高模型泛化性能的一类方法的统称。所谓惩罚是指对损失函数中的某些参数做一些限制。此时目标函数变成了原始损失函数+惩罚项,常用的正则项一般有两种,英文称作 l 1 − n o r m l_{1}−norm l1norm l 2 − n o r m l_{2}−norm l2norm,中文称作 L 1 L1 L1正则化和 L 2 L2 L2正则化,或者 L 1 L1 L1范数和 L 2 L2 L2范数(实际是 L 2 L2 L2范数的平方)。

对于线性回归模型,使用 L 1 L1 L1正则化的模型叫做 L a s s o Lasso Lasso回归,使用 L 2 L2 L2正则化的模型叫做 R i d g e Ridge Ridge回归(岭回归)。

1. L 1 L1 L1正则化

假设带有 L 1 L1 L1正则化的目标函数为:
J = J 0 + ∣ ∣ W ∣ ∣ 1 = J 0 + α ∑ ∣ w ∣           ( 1 ) J=J_0 + ||W||_1 = J_0 + \alpha\sum|w|\ \ \ \ \ \ \ \ \ (1) J=J0+W1=J0+αw         (1)

其中, J 0 J_0 J0为原始的损失函数, α ∑ ∣ w ∣ \alpha \sum |w| αw为L1正则化项, α \alpha α为正则化系数, w w w 表示特征的系数(x的参数),可以看到正则化项是对系数做了限制。L1正则化是指权值向量 w w w中各个元素的绝对值之和,通常表示为 ∣ ∣ w ∣ ∣ 1 ||w||_1 w1

L 1 L1 L1范数符合拉普拉斯分布,是不完全可微的。表现在图像上会有很多角出现。这些角和目标函数的接触机会远大于其他部分。就会造成最优值出现在坐标轴上,因此就会导致某一维的权重为 0 0 0 ,产生稀疏权重矩阵,进而防止过拟合。

L 1 L1 L1正则化项相当于对原始损失函数 J 0 J_0 J0做了一个约束。我们令 L = α ∑ ∣ w ∣ L = \alpha\sum|w| L=αw,那么整个目标函数可以写成:
J = J 0 + L       ( 2 ) J= J_0 + L \ \ \ \ \ (2) J=J0+L     (2)

我们的目的就是求出在约束条件 L L L下, J 0 J_0 J0取最小值的解。为了方便理解,我们考虑二维的情况,此时 L = ∣ w 1 ∣ + ∣ w 2 ∣ L = |w_1| + |w_2| L=w1+w2

L1正则化图示

图中等高线是 J 0 J_0 J0 的等高线,黑色菱形是 L L L 函数的图形。图中当等高线 J 0 J_0 J0 L L L 图形首次相交的地方就是最优解。上图中 J 0 J_0 J0 L L L 在一个顶点处相交,这个顶点就是最优解 w ∗ w^∗ w

拓展到多维, L L L 函数就会有很多突出的角(二维情况下四个,多维情况下更多), J 0 J_0 J0 与这些角接触的概率远大于与 L L L 其它部位接触的概率(这是很直觉的想象,突出的角比直线的边离等值线更近),而在这些角的位置上使很多权重为0。所以在最优解处,L1正则化就可以产生稀疏模型,进而可以用于特征选择。

α \alpha α正则化系数,可以控制 L L L 图形的大小, α \alpha α越小, L L L 图形越大, α \alpha α越大, L L L 图形越小。

L 1 L1 L1正则化对所有参数的惩罚力度都一样,可以让一部分权重变为 0 0 0,去除某些特征(权重为0则等效于去除),因此产生稀疏模型。

那么稀疏模型有什么好处呢?

稀疏化正则化项一个最重要的优势就在于实现特征的自动选择。所谓稀疏性,说白了就是模型的很多参数是0。通常机器学习中特征数量很多,例如文本处理时,如果将一个词组( t e r m term term)作为一个特征,那么特征数量会达到上万个( b i g r a m bigram bigram)。但是只有少数特征对该模型有贡献,绝大部分特征是没有贡献的。在最小化目标函数时,需要考虑这些额外的特征,虽然能获得更小的训练误差,但在预测阶段,模型会考虑这些无用的特征,从而可能干扰模型的正确预测。

这种模型就是所谓的泛化性能不强,有过拟合的嫌疑。如果通过稀疏化正则化项得到一个稀疏模型,很多参数是 0 0 0,此时我们就可以只关注系数是非零值的特征。这相当于对模型进行了一次特征选择,只留下一些比较重要的特征,提高模型的泛化能力,降低过拟合的可能。这就是稀疏模型与特征选择的关系。

2. L 2 L2 L2正则化

假设带有 L 2 L2 L2正则化的目标函数为:
J = J 0 + ∣ ∣ w ∣ ∣ 2 2 = J 0 + α ∑ w 2           ( 3 ) J = J_0 + ||w||^2_2 = J_0+\alpha \sum w^2 \ \ \ \ \ \ \ \ \ (3) J=J0+w22=J0+αw2         (3)
L 1 L1 L1正则化, w w w 表示特征的系数( x x x的参数),可以看到正则化项是对系数做了限制。 L 2 L2 L2正则化是指权值向量 w w w中各个元素的平方和然后再求平方根(可以看到 R i d g e Ridge Ridge回归的 L 2 L2 L2正则化项有平方符号),通常表示为 ∣ ∣ w ∣ ∣ 2 ||w||_2 w2

L 2 L2 L2范数符合高斯分布,是完全可微的。和 L 1 L1 L1相比,图像上为一个⚪。一般最优值不会在坐标轴上出现。在最小化正则项时,参数不断趋向于 0 0 0,但并不是 0 0 0

如下图:

L2正则化图示
相比于 L 1 L1 L1正则化, L 2 L2 L2正则化的函数 L L L J 0 J_0 J0 第一次相交的地方出现在具有稀疏性的位置的概率就变得非常小了。这就从直观上来解释了为什么 L 1 L1 L1正则化能产生稀疏性,而 L 2 L2 L2正则化不能产生稀疏性的原因了。

L 2 L2 L2正则化的作用:主要是为了防止过拟合

拟合过程中通常都倾向于让权值尽可能小,最后构造一个所有参数都比较小的模型。因为一般认为参数值小的模型比较简单,泛化能力强,能适应不同的数据集,也在一定程度上避免了过拟合现象。可以设想一下对于一个线性回归方程,若参数很大,那么只要数据偏移一点点,就会对结果造成很大的影响;但如果参数足够小,数据偏移得多一点也不会对结果造成什么影响,专业一点的说法是抗扰动能力强。

越是复杂的模型,越是尝试对所有样本进行拟合,包括异常点。这就会造成在较小的区间中产生较大的波动,这个较大的波动也会反映在这个区间的导数比较大。只有越大的参数才可能产生较大的导数。因此参数越小,模型就越简单。

为什么 L 2 L2 L2正则化能够得到值很小的参数???

我们通过线性回归,来看一下 L 2 L2 L2正则化解决过拟合问题。

假设要求解的参数为 θ \theta θ h θ ( x ) h_{\theta}(x) hθ(x) 是假设函数。线性回归一般使用平方差损失函数。单个样本的平方差是 h θ ( x ) − y ) 2 h_{\theta}(x) - y)^2 hθ(x)y)2,如果考虑所有样本,损失函数是对每个样本的平方差求和,假设有 m m m 个样本,线性回归的损失函数如下,
J ( θ ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2          ( 4 ) J(\theta) = \frac{1}{2m} \sum^m_{i=1} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \ \ \ \ \ \ \ \ (4) J(θ)=2m1i=1m(hθ(x(i))y(i))2        (4)

其梯度下降算法公式为:
θ j = θ j − α 1 m [ ∑ i = 1 m ( h θ ( x ( i ) − y ( i ) ) x j ( i ) ]          ( 5 ) \theta_j = \theta_j - \alpha \frac{1}{m}[\sum_{i=1}^m(h_{\theta}(x^{(i)}-y^{(i)})x_j^{(i)}] \ \ \ \ \ \ \ \ (5) θj=θjαm1[i=1m(hθ(x(i)y(i))xj(i)]        (5)

加入 L 2 L2 L2正则化后,其损失函数为
J ( θ ) = 1 2 ∑ i = 1 m ( ( h θ ( x ( i ) ) − y ( i ) ) 2 + λ ∑ i = 1 m θ j 2 )          ( 6 ) J(\theta) = \frac{1}{2}\sum^m_{i=1}((h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda\sum^m_{i=1}\theta_j^2) \ \ \ \ \ \ \ \ (6) J(θ)=21i=1m((hθ(x(i))y(i))2+λi=1mθj2)        (6)
其梯度下降算法公式为:
θ j = θ j − ( α 1 m [ ∑ i = 1 m ( h θ ( x ( i ) − y ( i ) ) x j ( i ) ] + λ θ j ) = θ j ( 1 − α λ m ) − ( α 1 m ∑ i = 1 m ( h θ ( x ( i ) − y ( i ) ) x j ( i ) )          ( 7 ) \theta_j = \theta_j - (\alpha \frac{1}{m}[\sum_{i=1}^m(h_{\theta}(x^{(i)}-y^{(i)})x_j^{(i)}] + \lambda \theta_j)=\theta_j(1-\alpha\frac{\lambda}{m}) - (\alpha \frac{1}{m}\sum_{i=1}^m(h_{\theta}(x^{(i)}-y^{(i)})x_j^{(i)}) \ \ \ \ \ \ \ \ (7) θj=θj(αm1[i=1m(hθ(x(i)y(i))xj(i)]+λθj)=θj(1αmλ)(αm1i=1m(hθ(x(i)y(i))xj(i))        (7)
可以看到,由于学习率 α > 0 , λ > 0 \alpha > 0, \lambda >0 α>0,λ>0,且这两个值一般都是很小的正数,所以 0 < 1 − α λ m < 1 0< 1-\alpha\frac{\lambda}{m} < 1 0<1αmλ<1,所以每次 θ \theta θ 在更新的时候都会减小, λ \lambda λ 越大,衰减的越快,这也是L2正则化可以获得更小的权重值的原因。

正如在线性回归中的应用, L 2 L2 L2正则化就是在损失函数中加入一个 L 2 L2 L2范数和一个超参数 λ \lambda λ L 2 L2 L2范数用 ∣ ∣ w ∣ ∣ 2 ||w||^2 w2 这种符号表示,它的意思是对于向量 w w w 中的各个数先求平方再加和。线性回归中加入的对于 θ j \theta_j θj 求平方和就是一个L2范数。超参数 λ \lambda λ 则用于控制参数惩罚的程度。

我们在举个例子,来展示 L 2 L2 L2正则化如何解决过拟合的现象

来源:吴恩达机器学习课程

将上述公式分为两部分,左边部分即为原始的损失函数,右边部分为 L 2 L2 L2正则化项(注意:正则化项中不包含 θ 0 \theta_0 θ0)。 λ \lambda λ 为超参数,是人为设定的。为了最小化整个损失函数,那么就要减小 θ 1 \theta_1 θ1 ~ θ n \theta_n θn 的值。对于上图中的那种过拟合状态,加入正则项后, θ 1 \theta_1 θ1 ~ θ n \theta_n θn减小,也就是使得权重衰减,这样就会降低高阶项对于整个函数的影响,使得估计函数变得比较平滑。

可以想象一种极端的情况,如果 λ \lambda λ 为无穷大,那么 θ 1 \theta_1 θ1 ~ θ n \theta_n θn 趋近于0,那么整个式子就只剩一个 θ 0 \theta_0 θ0,为一条和y轴垂直的直线,这种状态为严重的欠拟合状态。可以看到,当 λ \lambda λ为0时,即为原来的状态,此时过拟合。所以会有一个恰当的 λ \lambda λ使得模型处于既不过拟合又不欠拟合的状态。

在未加入 L 2 L2 L2正则化发生过拟合时,拟合函数需要顾忌每一个点,最终形成的拟合函数波动很大,在某些很小的区间里,函数值的变化很剧烈,也就是某些 w w w 值非常大。为此, L 2 L2 L2 正则化的加入惩罚了权重变大的趋势,逼迫所有 w w w 尽可能趋向零但不为零( L 2 L2 L2正则化的导数趋于零),导致权重较为平滑。

3. 直观理解为什么 L 1 L1 L1正则更稀疏, L 2 L2 L2正则权重接近于0.

假设只有一个参数为 w w w,损失函数为 L ( w ) L(w) L(w),分别加上 L 1 L1 L1正则项和 L 2 L2 L2正则项后有:

J L 1 ( w ) = L ( w ) + λ ∣ w ∣ J L 2 ( w ) = L ( w ) + λ w 2 J_{L1}(w)=L(w) +\lambda|w| \\ J_{L2}(w)=L(w)+\lambda w^{2} JL1(w)=L(w)+λwJL2(w)=L(w)+λw2
这里,假设 L ( w ) L(w) L(w)在0处的导数值为 d 0 d_{0} d0,即:
∂ L ( w ) ∂ w ∣ w = 0 = d 0 \left.\frac{\partial L(w)}{\partial w}\right|_{w=0}=d_{0} wL(w)w=0=d0
这时,可以推导使用 L 1 L1 L1正则和 L 2 L2 L2正则时的导数。

当引入 L 2 L2 L2正则项,在 0 0 0处的导数: ∂ J L 2 ( w ) ∂ w ∣ w = 0 = d 0 + 2 × λ × w = d 0 \left.\frac{\partial J_{L 2}(w)}{\partial w}\right|_{w=0}=d_{0}+2 \times \lambda \times w=d_{0} wJL2(w)w=0=d0+2×λ×w=d0

引入 L 1 L1 L1正则项,在 0 0 0处的导数:
∂ J L 1 ( w ) ∂ w ∣ w = 0 − = d 0 − λ ∂ J L 1 ( w ) ∂ w ∣ w = 0 + = d 0 + λ \begin{array}{l} \left.\frac{\partial J_{L 1}(w)}{\partial w}\right|_{w=0^{-}}=d_{0}-\lambda \\ \left.\frac{\partial J_{L 1}(w)}{\partial w}\right|_{w=0^{+}}=d_{0}+\lambda \end{array} wJL1(w)w=0=d0λwJL1(w)w=0+=d0+λ
可见,引入 L 2 L2 L2正则时,损失函数在0处的导数仍是 d 0 d_{0} d0 ,无变化。

而引入 L 1 L1 L1正则后,损失函数在 0 0 0处的导数有一个突变。从 d 0 − λ d_{0}-\lambda d0λ d 0 + λ d_{0}+\lambda d0+λ。若 d 0 − λ d_{0}-\lambda d0λ d 0 + λ d_{0}+\lambda d0+λ异号,则在 0 0 0处会是一个极小值点。因此,优化时,很可能优化到该极小值点上,即 w = 0 w=0 w=0处。

当然,这里只解释了有一个参数的情况,如果有更多的参数,也是类似的。因此,用L1正则更容易产生稀疏解。

4. 从先验概率分布来了解,为何L1正则更加稀疏?

假设,我们的数据数据是稀疏的,不妨就认为它来自某种 l a p l a c e laplace laplace分布。其中 l a p l a c e laplace laplace的概率密度函数图像如下图所示:

再看看 l a p l a c e laplace laplace分布的概率密度函数:
f ( x ∣ μ , b ) = 1 2 b exp ⁡ ( − ∣ x − μ ∣ b ) f(x \mid \mu, b)=\frac{1}{2 b} \exp \left(-\frac{|x-\mu|}{b}\right) f(xμ,b)=2b1exp(bxμ)
如果取对数,剩下的是一个一次项 ∣ x − u ∣ |x-u| xu,这就是 L 1 L1 L1范式。所以用 L 1 L1 L1范式去正则,就假定了你的数据是稀疏的 l a p l a c e laplace laplace分布。

5. 总结

  • L 1 L1 L1正则化项是模型各个参数的绝对值之和。 L 2 L2 L2正则化项是模型各个参数的平方和的开方值。
  • L 1 L1 L1正则化可以使部分权重为 0 0 0,产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择;一定程度上, L 1 L1 L1也可以防止过拟合,当 L 1 L1 L1的正则化系数很小时,得到的最优解会很小,可以达到和 L 2 L2 L2正则化类似的效果。
  • L 2 L2 L2正则化通过权重衰减,可以使所有的权重趋向于 0 0 0,但不为 0 0 0,导致模型权重参数较小且较为平滑,防止模型过拟合( o v e r f i t t i n g overfitting overfitting);
  • L 2 L2 L2正则化的效果是对原最优解的每个元素进行不同比例的放缩; L 1 L1 L1正则化则会使原最优解的元素产生不同量的偏移,并使某些元素为 0 0 0,从而产生稀疏性。

参考

  1. https://www.cnblogs.com/zingp/p/10375691.html
  2. https://www.jianshu.com/p/27ac92472205
  3. https://www.cnblogs.com/heguanyou/p/7582578.html
  4. https://blog.csdn.net/jinping_shi/article/details/52433975
  5. https://blog.csdn.net/b876144622/article/details/81276818
  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Fighting_1997

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值