计算A/B Test需要的样本量

本文介绍了在A/B Test中使用Z检验的重要性,解释了Z检验的原理和适用条件,并提到了Python的statsmodels库作为计算工具。此外,还推荐了一个在线样本量计算器帮助确定实验所需的样本数量。
摘要由CSDN通过智能技术生成

A/B Test是我们做算法模型时离不开的助手,只有通过A/B Test的模型才能进入产品。但要使A/B Test达到应有的效果,我们必须严格地满足它的一些要求。这里有一篇关于A/B test的文章:ABtest和假设检验、流量分配写得很好,我只在这里补充一些细节。

Z检验

很多情况下,我们要用Z检验来判断A/B Test的有效性。Z检验,也称“U检验”,是为了检验在零假设情况下测试数据能否可以接近正态分布的一种统计测试。根据中心极限定理,在大样本条件下许多测验可以被贴合为正态分布。在不同的显著性水平上,Z检验有着同一个临界值,因此它比临界值标准不同学生t检验更简单易用。当实际标准差未知,而样本容量较小(小于等于30)时,学生T检验更加适用。

我们设H0假设为A、B没有显著性差异,H1假设为A、B有显著性差异。那我们就有几个重要的数据需要考虑:

  • 样本容量,即A、B的sample数量,一般我们会设 n a = n b n_a
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值