Catboost学习笔记

CatBoost

教程来自 https://www.youtube.com/watch?v=8o0e-r0B5xQ

一般来说,GB方法适用于异质化数据。即,若你的数据集全由图片数据构成或者全由视频数据构成之类的,我们称其为同质化数据,这时使用神经网络往往会有更好的表现。但对于异质化数据,比如说数据集中有user gender,user age,也有content data等等的情况,GB方法的表现往往更好。GB方法比神经网络的入门门槛更低,使用起来也更简单。

NN和GB方法可以结合起来使用,并常常有很好的表现。我们可以使用NN方法学习embedding feature,并且和其他一些特征结合起来,再过GBDT。

Catboost具有一些和其他类似的库不同的特征。

第一,Catboost使用对称树。XGboost一层一层地建立节点,lightGBM一个一个地建立节点,而Catboost总是使用完全二叉树。它的节点是镜像的。Catboost称对称树有利于避免overfit,增加可靠性,并且能大大加速预测等等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值