人工智能教程 - 数学基础课程1.1 - 数学分析(一)18-21 微积分第二定理,应用,壳层法,加权平均

微积分第二定理

Info about F’

Δ F = F ( b ) − F ( a ) , Δ x = b − a \Delta F = F(b) -F(a),\Delta x = b-a ΔF=F(b)F(a),Δx=ba

Δ F = ∫ a b f ( x ) d x   ( F T C 1 ) \Delta F = \int_{a}^{b}f(x) dx \ (FTC1) ΔF=abf(x)dx (FTC1)

Δ F Δ x = 1 b − a ∫ a b f ( x ) d x \color{Red}\frac{\Delta F }{\Delta x}= \frac{1}{b-a} \int_{a}^{b}f(x) dx ΔxΔF=ba1abf(x)dx

Average (f)

FTC2

IF f is continuous,and G ( x ) = ∫ a x f ( t ) d t ;    a ≤ t ≤ x G(x) = \int_{a}^{x}f(t)dt; \ \ a\leq t\leq x G(x)=axf(t)dt;  atx

then G’(x) = f(x)


定积分在对数和集合中的应用

FTC2:

d d x ∫ a x f ( t ) d t = f ( x ) \frac{d}{dx}\int_{a}^{x}f(t)dt = f(x) dxdaxf(t)dt=f(x)
S o l v e    y = 1 x Solve \ \ y=\frac{1}{x} Solve  y=x1

Defination of Log:

L ( x ) = ∫ 1 x d t t {\color{Red} L(x) = \int _{1}^{x} \frac{dt}{t}} L(x)=1xtdt

Claim: L(ab) = L(a) + L(b)
Fresnel:

C ( x ) = ∫ 0 x c o s ( t 2 ) d t C(x) = \int_{0}^{x}cos(t^2)dt C(x)=0xcos(t2)dt

S ( x ) = ∫ 0 x s i n ( t 2 ) d t S(x) = \int_{0}^{x} sin(t^2) dt S(x)=0xsin(t2)dt

几何绘图法 AREAS BETWEEN CURVES


壳层法,圆盘法面积

SLICE切片:

Δ V ≈ A Δ x \Delta V\approx A \Delta x ΔVAΔx

dv = A(x) dx

V = ∫ A ( x ) d x ≈ ∑ A i Δ x V = \int A(x)dx \approx \sum A_i \Delta x V=A(x)dxAiΔx

Solids of revolution 旋转立方体

壳层法|Disks|:

d V = ( π y 2 ) d x {\color{Red} dV=(\pi y^2)dx} dV=(πy2)dx


功,平均值,概率

Average value

y 1 + . . . + y n n → 1 b − a ∫ a b f ( x ) d x \LARGE {\color{Red} \frac{y_1+...+y_n}{n}\rightarrow \frac{1}{b-a}\int_{a}^{b}f(x)dx} ny1+...+ynba1abf(x)dx

Continous average = AVE(f)

y=f(x)

Δ x = b − a n \Delta x = \frac{b-a}{n} Δx=nba

spacing
a= x_0<x_1<x_2<…<x_n=b
y_1=f(x_1),y_2=f(x_2)…y_n=f(x_n)

Riem Sum

( y 1 + . . . + y n ) Δ x b − a → Δ x → 0 ∫ a b f ( x ) d x b − a {\color{Red}\large \frac{(y_1+...+y_n) \Delta x}{b-a}\underset{\Delta x\rightarrow 0}{\rightarrow}\frac{\int_{a}^{b}f(x)dx}{b-a}} ba(y1+...+yn)ΔxΔx0baabf(x)dx

Δ x b − a = 1 n → 0 ( n → ∞ ) \frac{\Delta x}{b-a} = \frac{1}{n} \rightarrow 0(n\rightarrow \infty) baΔx=n10(n)

WEIGHTED AVERAGE

∫ a b f ( x ) w ( x ) d x ∫ a b w ( x ) d x = f ( x ) {\color{Red}\large \frac{\int_{a}^{b}f(x)w(x)dx}{\int_{a}^{b}w(x)dx}=f(x)} abw(x)dxabf(x)w(x)dx=f(x)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值