微积分第二定理
Info about F’
Δ F = F ( b ) − F ( a ) , Δ x = b − a \Delta F = F(b) -F(a),\Delta x = b-a ΔF=F(b)−F(a),Δx=b−a
Δ F = ∫ a b f ( x ) d x ( F T C 1 ) \Delta F = \int_{a}^{b}f(x) dx \ (FTC1) ΔF=∫abf(x)dx (FTC1)
Δ F Δ x = 1 b − a ∫ a b f ( x ) d x \color{Red}\frac{\Delta F }{\Delta x}= \frac{1}{b-a} \int_{a}^{b}f(x) dx ΔxΔF=b−a1∫abf(x)dx
Average (f)
FTC2
IF f is continuous,and G ( x ) = ∫ a x f ( t ) d t ; a ≤ t ≤ x G(x) = \int_{a}^{x}f(t)dt; \ \ a\leq t\leq x G(x)=∫axf(t)dt; a≤t≤x
then G’(x) = f(x)
定积分在对数和集合中的应用
FTC2:
d d x ∫ a x f ( t ) d t = f ( x ) \frac{d}{dx}\int_{a}^{x}f(t)dt = f(x) dxd∫axf(t)dt=f(x)
S o l v e y = 1 x Solve \ \ y=\frac{1}{x} Solve y=x1
Defination of Log:
L ( x ) = ∫ 1 x d t t {\color{Red} L(x) = \int _{1}^{x} \frac{dt}{t}} L(x)=∫1xtdt
Claim: L(ab) = L(a) + L(b)
Fresnel:
C ( x ) = ∫ 0 x c o s ( t 2 ) d t C(x) = \int_{0}^{x}cos(t^2)dt C(x)=∫0xcos(t2)dt
S ( x ) = ∫ 0 x s i n ( t 2 ) d t S(x) = \int_{0}^{x} sin(t^2) dt S(x)=∫0xsin(t2)dt
几何绘图法 AREAS BETWEEN CURVES
壳层法,圆盘法面积
SLICE切片:
Δ V ≈ A Δ x \Delta V\approx A \Delta x ΔV≈AΔx
dv = A(x) dx
V = ∫ A ( x ) d x ≈ ∑ A i Δ x V = \int A(x)dx \approx \sum A_i \Delta x V=∫A(x)dx≈∑AiΔx
Solids of revolution 旋转立方体
壳层法|Disks|:
d V = ( π y 2 ) d x {\color{Red} dV=(\pi y^2)dx} dV=(πy2)dx
功,平均值,概率
Average value
y 1 + . . . + y n n → 1 b − a ∫ a b f ( x ) d x \LARGE {\color{Red} \frac{y_1+...+y_n}{n}\rightarrow \frac{1}{b-a}\int_{a}^{b}f(x)dx} ny1+...+yn→b−a1∫abf(x)dx
Continous average = AVE(f)
y=f(x)
Δ x = b − a n \Delta x = \frac{b-a}{n} Δx=nb−a
spacing
a= x_0<x_1<x_2<…<x_n=b
y_1=f(x_1),y_2=f(x_2)…y_n=f(x_n)
Riem Sum
( y 1 + . . . + y n ) Δ x b − a → Δ x → 0 ∫ a b f ( x ) d x b − a {\color{Red}\large \frac{(y_1+...+y_n) \Delta x}{b-a}\underset{\Delta x\rightarrow 0}{\rightarrow}\frac{\int_{a}^{b}f(x)dx}{b-a}} b−a(y1+...+yn)ΔxΔx→0→b−a∫abf(x)dx
Δ x b − a = 1 n → 0 ( n → ∞ ) \frac{\Delta x}{b-a} = \frac{1}{n} \rightarrow 0(n\rightarrow \infty) b−aΔx=n1→0(n→∞)
WEIGHTED AVERAGE
∫ a b f ( x ) w ( x ) d x ∫ a b w ( x ) d x = f ( x ) {\color{Red}\large \frac{\int_{a}^{b}f(x)w(x)dx}{\int_{a}^{b}w(x)dx}=f(x)} ∫abw(x)dx∫abf(x)w(x)dx=f(x)