实用算法实现-第 7 篇 Trie树

本文介绍了Trie树的原理及其在解决PKU JudgeOnline 2513题"Colored Sticks"中的应用。通过建立Trie树进行颜色编码,结合并查集和度数判断,解决棍子颜色匹配形成无向图欧拉通路的问题。
摘要由CSDN通过智能技术生成

Trie,又称单词查找树,是一种树形结构,用于保存大量的字符串。它的优点是:利用字符串的公共前缀来节约存储空间。它有3个基本性质:

1. 根结点不包含字符,除根结点外每一个结点都只包含一个字符。

2. 从根结点到某一结点,路径上经过的字符连接起来,为该结点对应的字符串。

3. 每个结点的所有子结点包含的字符都不相同。

7.1    Trie树

7.1.1   实例

PKU JudgeOnline, 2513, ColoredSticks.

7.1.2   问题描述

给定一些棍子,棍子的两端涂上两种颜色。问这些棍子能不能连成一条直线,使得连在一起的两根棍子的相邻一端颜色相同。

7.1.3   输入

bluered

redviolet

cyanblue

bluemagenta

magentacyan

7.1.4   输出

Possible

7.1.5   分析

这里是个无向图的欧拉通路问题。

由于颜色种类很多,首先需要使用Trie树来查找颜色对应的编号。然后通过并查集和度数来判断欧拉通路是否存在。

7.1.6   程序

#include<stdio.h>
#include<string.h>
#incl
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值