图形图像--1

 

 
文章列表
 
您正在查看 "图形图像" 分类下的文章

2009-02-07 10:57

  用现在流行的WMP,REALPLAYER,视频解霸 播放存在的图像文件,显示效果就会退化。

  可能只能算播放的侧重点不同吧。

  数字图像文件光就存储而言,是不存在退化的问题的。

  +++

  为什么不能播放出原始、逼真特质的图像?

  光就数字图形而言,效果已经非常逼真了。图像呢,一个是分帧显示,需要损失画质。但光就明亮程度,色彩方面,也经常出现变质。

  图形文件经常被粘贴和复制到网页,经常出现退化的现象。

  和IE有很大的关系。

  模拟图形和模拟图像,退化的情况经常出现。和存储介质的化学特性有关。

  模拟图形通过扫描时,存在退化现象。

  数码相机DC拍摄真实的图形时,最终效果存在明显的退化现象。不过,比以前的模拟相机已经好上很多。

  知道退化模型,就可以反向进行效果很好的图像图形复原。

  怎样寻找图像退化模型?

  可以用设置退化环境的方法:

  1、在出现经常性退化的环境,在不同的时间段,记录退化过程的图形图像。

  2、根据时间段的不同,记录进计算机后。表明经历不同的时间段,图形图像的退化情况。

  3、由计算机辅助处理,分析不同阶段,退化情况,退化因素,退化的范围。

  退化,一般就是图形图像的图形学特征的改变。

  4、形成退化过程的多因素相关函数。

  5、相当于重现退化的过程,把图形图像记录下来,存储到计算机中,由计算机进行分析:在哪些因素下,图形图像发生了哪些退化的变化。

  ===

  模拟退化过程,一般耗时间。另外的办法,如果资料比较全,可在已经发生不同程度退化的图形图像中,选取有代表性的,进行分析,获取退化函数。

  ===

  第三种办法,使用退化因子,强加到原始图形图像上。

  ===

  第四种办法,仅需要原始图形图像,和最终退化的图形图像,进行分析。建立退化模型。

  ===

  第五种办法,加速退化过程,要求达到同样的效果。

  对各种图形图像特征的退化过程,可分开进行加速退化过程模拟。

  一般来说,各种图形图像特征的退化过程,可以分开,不会互相影响。

  ===

  第六种办法,自适应退化。

  对原始图形图像的局部、或某种特征,设计退化函数,进行计算机辅助的退化处理。

  再进行图形比较,看退化效果是否和真实的退化效果一致。这里,只需要原始不失真图形图像,和最终退化图形图像两类信息,就可进行。

  ===

  滤波特性。

  只对感兴趣的信息进行处理,对感兴趣的信息,可同时综合进行,也可单独处理。

  +++

  强行进行退化,也就是人为进行退化,也有许多研究题目可以做。

  由常见的退化效果进行总控。

  需要对常见的退化效果进行归纳,得出其内涵和外延。

  +++

  退化加速。

  +++

  局部退化。

  全局退化。

=================

  第一个问题,先要处理图形比较。

  第二个问题,退化的图形图像的特点。

象模糊,马赛克,色彩漂移,色彩浸润,色彩失真,亮度失真。

  第三个问题,从源和宿的比较,求出退化函数。与时间序列关系。加速关系。

 

  ---

  图形图像的退化,是渐进的。这个嘛,是原则性的思想。对图像图形退化的研究,要从这个思路出发。

也就是说,在相对长的时间区间内,退化不是一蹴而就的。

  可能是从某个局部开始图像图形退化过程。是《过程论》的初级思想。

  也可能是从全局、均匀地开始退化。从点到面的发展过程。

  这个退化的过程,是由退化因子进行控制的。过程,与控制。是图形图像退化原理的主要思想基础。

  当然,不会到《过程论》和《控制论》那么复杂,没那个必要。那些,都是已知条件比较明确的情况下,进行的研究。

 
2009-02-07 10:56

===《图像处理》,孙即祥,科学出版社,2004年9月第一版

===《数字图像处理》,姚敏等,机械工业出版社,2006年7月第一版

 

一、图像变换

傅里叶变换,余弦变换,沃尔什--哈达玛变换,奇异值分解,KL变换。

二、图像增强

对比度增强,直方图修正,平滑,锐化,同态增晰,几何校正,伪彩色假彩色,图像间的算术运算。

三、图像恢复

降质模型,频域中的恢复方法,约束和无约束的最小二乘估计,线性或非线性的均方估计,最大熵恢复,图像恢复的代数方法,运动模糊恢复,盲恢复。

四、图像分割

根据灰度分割,边界检测的基本方法,拟合曲面求导法,高斯平滑滤波求导法,统计判决法,分裂--合并算法,跟踪技术,模糊数学方法,模型化和统计检验法,松驰标记法,匹配检测技术,活动轮廓模型法,基于模式识别检测法,基于视觉特性检测法。

五、图像分析与描述

灰度幅值与统计特征描述,边界点集组织与曲线描述,闭合曲线的傅氏描述,区域和曲线角点提取,区域拓扑特性,区域的矩描述,区域主轴,区域等效椭圆,区域几何特性,区域四分树方法,区域中轴,区域扩展与收缩,区域曲线表示,区域纹理特性,图像的关系描述。

六、图像数据压缩

轮廓编码压缩,行程编码压缩,预测误差编码压缩,正交变换编码压缩,自适应编码压缩,混合编码压缩,

子带编码技术,人工神经网络技术,分形几何理论压缩,小波理论压缩。

七、图像重建

图像投影重建基本原理,离散图像的傅氏变换重建法,卷积逆投影法,扇形投影的滤波逆投影法,代数重建法。

关于目标的三维形状感知,运动分析,空间定位等理论和方法是机器视觉涉及的主要内容。

八、图像复原、图例合成、图像存储和传输、图像获取、目标检测、图像表示与描述、图像配准、图像分类与识别、图像理解、场景分析和理解、图像数据库的建立索引检索以及综合利用

九、图像复原

噪声干扰和模糊。可用逆滤波、维纳滤波、最小约束二乘方滤波、同态滤波方法去除。

十、图像编码

冗余编码、变换编码、小波变换编码、神经网络编码、模型基编码。

十一、图像分析

边缘检测、区域分割、特征抽取。

十二、图像识别

统计、句法(结构)、模糊识别法。

 
2009-02-07 10:55

  都是基于像素的。都是基于刷新机制的。都是基于显示内存数据的??

  有刷新频率,行扫描和列扫描频率。

  根据数值化的偏转电压射出电子,点亮屏幕。所以,每个像素的显示才不同??

  三原色(红、绿、蓝)组成彩色。??

  ===

  显示内存应该在智能显示器内,或者显示卡中。存在同时是智能显示器和有显示卡的情况。

  显示器,和CPU的主板之间,一定有可扩展的标准通信协议。

  同时,是标准接口。

  =====

  回过头,看看冷热启动时的屏幕显示情况:把部件情况、启动过程信息送到黑白对比的屏幕上。

  有的会显示主板厂家的广告图形。硬件是固化在主板的存储器中的。

  然后,才进入WINDOWS的启动画面。

  =====

  显示器不联机,只带电时,有自检图形。分为动态的黑白图像和彩色图像。是智能的。例子为CRT类型的。  

  =====

  说句题外话,

  2002年,江门市某公司正随大流,设计液晶显示器。需要编程的,有I2C总线,和串口总线,MCUMITSUBISHI30620芯片。

  可见当时抢着生产的液晶显示器是有智能的,即有计算能力和存储能力的。

  怎么评判此液晶显示器设计达到标准和目标?

  1、自检成功。

  2、可全亮和全黑。

  3、可定时。

  4、可分点和分块显示。

  5、可显示任意图形。

  6、有图像显示功能。

  7、灰度和色彩。色彩度的设计成功与否,是通过和成品显示器显示同样色彩来对比?……

  ===

  比较HP绘图仪的自检图形。为线框的航天飞机,彩色的。

  ===

  显示内存用什么才进行可编程?

  屏幕图形和图像是否随着显示内存的数据随时刷新?

  现在的问题还是:显示内存的作用?显示内存中的数据和显示机制的关系?显示内存的物理位置?显示内存的物理特性?直接驱动显示器进行显示的编程的可能,有无此类型必要?

  但对显示机制,尤其是操作系统的显示、冷热启动的显示,要进行研究。

  如果成功,则可显示的内容、显示方案与显示处理及显示策略的主动性和可控性、显示的效率,会有很大的改观。

  ===显示机制问题比较复杂

  由于显示可能是中断发生的(???例子:NVIDIA 23号中断),在WINDOWS系统下,是不可能拱手交出中断系统的控制权的,那会影响WINDOWS的整体性。

  使用WINDOWSCASEIDE提供的有限的图形函数,则相当于是WIDOWS控制中断显示。

  之所以提显示的中断,是因为显示一般有固定的中断地址和中断号。

  显示数据处理完就发中断请求?

  有输入输出范围3BX。有8*4位的内存范围中的4段。

  WINDOWS是怎样自理好显示硬件和软件的关系的?比如,上述的内存范围是什么概念?是固定的吗?还是根据不同的显示卡部件而不同?

  没有显示卡时,主板上的相当于显示卡部件的工作原理和设计原理?

  还有,牵涉到图形协议处理器GPU,则比较复杂。

==============================================================================

  为什么显示的灵活性如此重要?

  因为,不管输入数据如何,许多类型的屏幕输出,是需要人或者领域专家来交互式处理的。

  就是需要人来对最终显示的图像和图形进行处理,得出结论,推出结论。

  如果显示情况很复杂,更是如此。

  又比如,显示的情况是新情况,具有动态性。更是图形和图像处理越主动和越可控,就越好。

===========================================================================

  在最终显示到屏幕之前的图形图像数据的快速处理方案和处理算法的获得,同样非常重要

  考虑到可只提供策略,自动生成图形图像处理算法的情况。

具体的例子,不好说。但因为现实情况的复杂性,经常会有新情况出现。

 
2009-02-07 10:55


  一、图像增强


对比度增强,直方图均衡化,直方图匹配(规定化),

直方图统计学,直方图修正,平滑,

锐化,同态增晰,几何校正,

伪彩色假彩色,图像间的算术运算。

用算术逻辑操作增强(图像减法处理,图像平均处理)。

平滑空间滤波器(平滑线性滤波,统计排序滤波)。

锐化空间滤波(拉普拉斯算子,梯度法)。
频率域图像增强(理想低通滤波,巴特沃思低通滤波,高斯低通滤波)。同态滤波。

 

---------------------------------以下为具体内容-------------------

在邻域内实现增强操作常利用模板与图像卷积来实现。模板实际上是一个小的(如3*3)二维阵列,模板中各元素的取值确定了模板的性质,如图像平滑、锐化等。这种模板操作常称为空间滤波。

直接灰度变换:图像求反,线性灰度变换,对数变换(可动态压缩),灰度切割(增强特定范围的对比度),位图切割(多个位表示灰度值,每个像素由8位表示时,就说图像有8个位平面)。

直方图修正:表示数字图像中每一个灰度级与该灰度级出现的频率之间的统计关系。

直方图均衡化(若一幅图像其像素占有全部可能的灰度级并且分布均匀,则这样的图像有高对比度和多变的灰度色调,而显示出一幅灰度级丰富且动态范围大的图像。此方法仅依靠输入图像的直方图的信息可达到这一效果。这个方法的基本思想是把原始图像不均衡的直方图变换为均匀分布的形式,这样就增加了灰度值的动态范围,从而达到增强图像整体对比度的效果。

优点是能自动增强整个图像的对比度,但它的具体增强效果不易控制,处理的结果也是得到全局均衡化的直方图。)

直方图规定化(有时需变换直方图,使之成为某个特定的形状,从而有选择地增强某个灰度值范围内的对比度。

三个步骤:(1)均衡化。(2)同样对规定图像计算能使规定的直方图均衡化的变换。(3)将第一步的变换反转过来,即将原始直方图对应映射到规定的直方图。)

空间滤波增强:在图像空间中借助模板进行邻域操作完成。可分为线性滤波和非线性滤波。平滑滤波和锐化滤波。

平滑滤波器的作用是模糊处理和减少噪声。

线性平滑滤波:用滤波模板确定的邻域内像素的平均灰度值去代替图像中的每一个像素点的值。

中值滤波。

锐化滤波:防止图像模糊。使边缘和轮廓线模糊的图像变得清晰,使其细节更加清晰。梯度算子法,拉普拉斯算子法。

 

频域滤波增强:

卷积过程:将图像模板在图像中逐像素移动,并对每个像素进行指定数量的计算。

低通滤波:图像中的边缘和噪声对应于傅里叶变换中的高频部分。

巴特沃斯低通滤波:

高通滤波:

带通和带阴滤波:带通滤波器允许某个频率范围内的信号通过,而阻止其他频率范围的信号通过。与此相反,带阻滤波器阻止某个频率范围内的信号通过,而允许其他频率范围的信号通过。

同态滤波:在频域中同时将图像亮度范围进行压缩和将图像对比度增强。

---------------------------------------------------------------------

---------------------------------------------------------------------

---------------------------------------------------------------------


  二、图像恢复


降质模型,频域中的恢复方法,约束和无约束的最小二乘估计,

线性或非线性的均方估计,最大熵恢复,图像恢复的代数方法,

运动模糊恢复,盲恢复。

噪声模型。噪声存在下的惟一空间滤波复原(均值滤波,顺序统计滤波,自适应滤波,频域滤波)。

削减周期噪声(带阻滤波,带通滤波,陷波滤波,最佳陷波滤波)。

线性、位置不变的退化,图像观察估计法,试验估计法,模型估计法。

逆滤波。维纳滤波。几何均值滤波。几何变换。

---------------------------以下为图像恢复的具体内容--------------------

图像品质的原因。

图像退化模型是关键。

无约束和有约束两类。自动和交互。频域和空域。

连续函数退化模型:将线性系统理论中的单位冲激信号进行应用。

离散的退化模型:使用离散卷积的矩阵计算。求原始图像的计算量很大,需用循环矩阵对角化。

退化函数的估计:图像复原的主要目的是给定退化图像g(x,y)和退化函数H、噪声的假设,估计出原始图像f(x,y)。

而退化函数 H 需要估计。

估计方法:图像观察估计法;试验估计法;模型估计法。

消除匀速运动模糊。

维纳滤波:逆滤波比较简单,但没有清楚说明如何处理噪声。而维纳滤波综合了退化函数和噪声统计特性两方面进行复原处理。

维纳滤波是寻找一个滤波器,使得复原后图像和原始图像的均方误差最小。维纳滤波器通常又称为最小均方误差滤波器。

维纳滤波,存在的问题:

(1)需要知道未退化图像和噪声的功率谱,但一般不知道。

(2)维纳滤波建立在最小化统计准则的基础上,它所得到的结果只是平均意义上的最优。

约束最小二乘方滤波:其一,只要求噪声方差和均值的知识,而这些参数经常能从一幅给定的退化图像计算出来;其二,约束最小二乘方滤波对于所处理的每一幅图像都能产生最优的结果。

从噪声中复原:起因于图像获取和图像传输过程。通常认为噪声是由概率密度函数PDF表示的随机变量。

通常的噪声:高斯噪声,瑞利噪声,伽马噪声,指数噪声,均匀噪声,脉冲噪声。

空域滤波复原:均值滤波器,顺序统计滤波器,自适应滤波器。

均值滤波器包括:算术均值滤波器,几何均值滤波器,谐波均值滤波器,逆谐波均值滤波器。

顺序统计滤波器:其输出基于由滤波器包围的图像区域中像素点的排序,滤波器在任何点的输出由排序结果决定。有中值滤波器,最大值滤波器,最小值滤波器,中点滤波器。

自适应滤波器:

几何失真校正:从广义上说是一种图像退化。几何失真校正包括如下两个步骤:

空间变换:恢复原空间关系。

灰度插值。对空间变换后的像素赋予相应的灰度值以恢复原位置的灰度值。

几何失真图像配准复原。

---------------------------------------------------------------------

---------------------------------------------------------------------

---------------------------------------------------------------------



  三、图像分割

根据灰度分割,边界检测的基本方法,拟合曲面求导法,

高斯平滑滤波求导法,统计判决法,分裂--合并算法,

跟踪技术,模糊数学方法,模型化和统计检验法,

松驰标记法,匹配检测技术,活动轮廓模型法,

基于模式识别检测法,基于视觉特性检测法。

间断检测。边缘连接和边界检测。

门限处理(基本全局门限,基本自适应门限,最佳全局和自适应门限,基于不同变量的门限)。

基于区域的分割(区域生长,区域分离和合并)。

基于形态学分水岭的分割(水坝构造,分水岭分割算法)

---------------------------------以下为具体内容-------------------

 

图像识别的基础是图像分割,其作用是把反映物体真实情况的、占据不同区域的、具有不同特性的目标区分开来,并形成数字特征。

图像分割是图像识别和图像理解的基本前提步骤,图像分割质量的好坏直接影响后续图像处理的效果,甚至决定其成败。

 

图像分割是指将一幅图像分解为若干互不交叠的、有意义的、具有相同性质的区域。

好的图像分割具有以下特征:

(1)分割出来的各区域对某种性质(例如灰度、纹理)而言具有相似性,区域内部是连通的且没有过多小孔。

(2)相邻区域对分割所依据的性质有明显的差异。

(3)区域边界是明确的。

 

边缘是一个区域的开始,是另一个边缘的结束。

基于一阶导数的边缘检测算子包括:ROBERTS算子,SOBEL算子,PREWITT算子。还有拉普拉斯算子,LOG算子,CANNY算子。梯度算子。高斯--拉普拉斯算子。

边界跟踪:获得的边缘点有可能是不连续的,必须通过边界跟踪将它们转换为有意义的边缘信息,以便于后续处理。

 

边界跟踪三个步骤:(1)确定边界的起始搜索点。(2)确定合适的边界判别准则和搜索准则。(3)确定搜索的终止条件。

 

霍夫变换:HOUGH变换可以用于将边缘像素连接起来得到边界曲线,它的主要优点在于受噪声和曲线间断的影响较小。

 

阈值分割:经典方法是基于灰度阈值的分割方法,它通过设置阈值,把像素点按灰度级分若干类,从而实现图像分割。

人工选择法:

自动阈值法:通常使用灰度直方图来分析图像中灰度值的分布,结合特定的应用领域知识来选取最合适的阈值。

最小误差阈值选择法:通常以图像中的灰度为模式特征,假设各模式的灰度是独立同分布的随机变量,并假设图像中待分割的模式服从一定的概率分布,则可以得到满足最小误差分类准则的分割阈值。

分水岭算法:图形看作拓扑地形图。灰度值看做对应地形高度值。

区域分割:认为分割出来的属于同一区域的像素应具有相似的性质,其概念是相当直观的。

传统的区域分割法:区域增长法,区域分开合并法。是一种迭代方法,空间和时间开销比较大。

运动分割:

背景差值法:假定图像背景是静止不变的,将每一帧图像的灰度值减去背景灰度值可得到一个差值图像。

图像差分法:图像背景不是静止。

基于光流的分割方法:

基于块的分割方法:

 

 

 

 

---------------------------------------------------------------------

---------------------------------------------------------------------

---------------------------------------------------------------------

 

  四、图像表示与描述

链码,多边形近似,

标记图,边界线段,骨架。

边界描绘子:形状数,傅里叶描绘子,统计矩。

区域描绘子:拓扑描绘子,纹理,二维函数矩。

运用主分量进行描绘。关系描绘。)

---------------------------------以下为具体内容-------------------

图像表示可以基于其内部特征,也可以基于外部特征,由此可将图像表示分成边界表示(如链码,边界分段等),和区域表示(如四叉树、骨架)两大类。

通常,边界表示较为关心的是图像中区域的形状特征,而区域表示则倾向于反映区域的灰度、颜色、纹理等特征。

描述方法:边界描述,区域描述。

三维:体积描述,表面描述,广义圆柱体描述。由二维组成。八叉树。广义锥。

下面讨论如何把图像低层处理之后的图像特征转换成有意义的几何表示。

四种边界表示:链码,边界分段,多边形近似和标记图。一种区域表示:骨架。

边界描述:

区域描述:

形态学描述:膨胀和腐蚀,开启和闭合,

 

---------------------------------------------------------------------

---------------------------------------------------------------------

---------------------------------------------------------------------





  五、图像编码

冗余编码、变换编码、小波变换编码、

神经网络编码、模型基编码。离散信源编码定理。

赫夫曼编码,香农--范诺编码,算术编码,行程编码。

LZW算法,预测编码(无损预测编码,有损预测编码),

变换编码,基于矢量量化技术的图像编码。

小波图像编码。

------------------------------以下为具体内容--------------------

以前一篇博客中的问题的答案:

  一幅512*512像素,8B/像素的黑白图像,占256KB磁盘空间。

  一幅512*512像素,每分量8B/像素的彩色静止图像,占3*256=768KB的磁盘空间。

  如果以每秒24帧传送此图像,则一秒钟的数据量=24*768KB=18?5MB.

冗余:空间冗余,时间冗余,结构冗余,信息熵冗余,知识冗余,视觉冗余。

图像的编码质量评价:

  可逆编码和不可逆编码。压缩前后的图像严格相同否。

不可逆编码:有失真压缩编码,熵压缩编码,有损压缩编码。

客观评价准则;主观评价准则。

压缩比。

信息理论基础与熵编码:

  离散信息源的熵表示。

  离散信息源编码定理:(1)香农信息保持编码定理。(2)变长编码定理。(3)变长最佳编码定理。

  赫夫曼编码。和《数据结构》课程中内容相近。

  香农--范诺编码。基于统计的变长编码算法,与HUFFMAN编码没有本质的区别。

算术编码:

  不是将单个信源符号映射成一个码字,而是,将整个信源表示为实数0到1之间的一个区间,其长度等于该序列的概率。再在该区间选择一个代表性的小数,转化为二进制作为实际的编码输出。

  消息序列中的每个元素都要缩短为一个区间。消息序列中元素越多,所得到的区间就越小。当区间变小时,就需要更多的位数来表示这个区间。

  采用算术编码,每个符号的平均编码长度可以为小数。

行程编码:RUN LENGTH ENCODING,RLE。利用空间冗余度压缩图像的方法,对某些相同灰度级成片连续出现的图像,是一种高效的编码方法。特别对二值图像显著。

  主要用在公用电话网上传真二值图像。

LZW算法:LEMPEL-ZIV-WELCH,对信源符号的可变长度序列分配固定长度的码字,且不需要了解被编码信源的概率情况。

  基本思想是建立一个编码表(WELCH称之为串表),将输入字符串映射成定长的码字输出,通常码长设为12比特。如果将图像当做一个一维的比特串,编码图像也视为一个一维的比特串,算法在产生输出串的同时更新编码表,这样编码表可以更好地适应所压缩图像的特殊性质。

预测编码:PREDICTIVE CODING。建立在信号数据的相关性上。它根据某一模型,利用以前的样本值对新样本进行预测,以此减少数据在时间和空间上的相关性,从而达到压缩数据的目的;但在实际预测编码时,一般不是建立在数据源的数学模型,而是基于估计理论、现代统计学理论,这是因为数据源的数学模型很难建立,有时根本无法得到其数学模型。

  在图像编码中有DPCM(DIFFERENTIAL PULSE CODE MODULATION,差分脉冲编码调制)。

无损预测编码:预测编码的基本思想是通过对每个像素中新增的信息进行提取和编码,以此来消除空间上较为接近的像素之间的冗余。这里新增信息是指像素实际值和预测值之间的差异。

有损预测编码:在前述模型上加一个量化器。(1)德尔塔调制。(2)最优量化器。(3)最佳线性预测器。(4)线性自适应预测编码。

  以上讨论的图像编码技术,都是直接对像素空间进行操作,称为空域方法。

  变换编码:

图像数据一般具有较强的相关性,若所选用的正交矢量空间的基矢量与图像本身的主要特征相近,在该正交矢量空间中描述图像数据则会变得更简单。图像经过正交变换后,把原来分散在原空间的图像数据在新的坐标空间中得到集中。对于大多数图像,大量变换系数很小,只要删除接近于零的系数,并且对较小的系数进行粗量化,而保留包含图像主要信息的系数,以此进行压缩编码。在重建图像进行解码(逆变换)时,所损失的将是一些不重要的信息,几乎不会引起图像的失真,图像的变换编码就是利用这些来压缩图像的,这种方法可得到较高的压缩比。

变换编码首先将一幅N*N的图像分割成(N/n)^2个子图像,然后对子图像进行变换操作,解除子图像像素间的相关性,达到用少量的变换系数包含尽可能多的图像信息的目的,接下来的量化步骤,是有选择地消除或粗量化带有很少信息的变换系数,因为它们对重建图像的质量影响很小。最后是编码,一般用变长码对量化后系数进行编码。解码是编码的逆操作,由于量化是不可逆的,所以在解码中没有对应的模块,其实压缩并不是在变换步骤中取得的,而是在量化变换系数和编码时取得的。

  变换选择:取决于可允许的重建误差和计算复杂性。

  基于矢量量化技术的图像编码:

矢量量化(VECTOR QUANTIZATION,VQ)技术是一种有损压缩技术,它根据一定的失真测度在码书中搜索出输入矢量失真最小的码字的索引,传输时仅传输这些码字的索引,接收方根据码字索引在码书中查找对应码字,再现输入矢量。

  变换选择:

---------------------------------------------------------------------

---------------------------------------------------------------------

---------------------------------------------------------------------

----------------------以下内容未补充---------------------------


一、二、三、四、五项,可“望文生义”。


  一、图像分析

边缘检测、区域分割、特征抽取。

  二、图像识别

统计、句法(结构)、模糊识别法。

  三、图像变换
傅里叶变换,余弦变换,沃尔什--哈达玛变换,奇异值分解,KL变换,对数变换,幂次变换,分段线性变换。

  四、图像分析与描述

灰度幅值与统计特征描述,边界点集组织与曲线描述,闭合曲线的傅氏描述,

区域和曲线角点提取,区域拓扑特性,区域的矩描述,

区域主轴,区域等效椭圆,区域几何特性,

区域四分树方法,区域中轴,区域扩展与收缩,

区域曲线表示,区域纹理特性,图像的关系描述。

  五、图像数据压缩

轮廓编码压缩,行程编码压缩,预测误差编码压缩,

正交变换编码压缩,自适应编码压缩,混合编码压缩,

子带编码技术,人工神经网络技术,分形几何理论压缩,小波理论压缩。

编码冗余,像素间冗余,心理视觉冗余,

保真度准则。变长编码,LZW编码,

位平面编码,无损预测编码。

有损预测编码,变换编码,小波编码。图像压缩标准。

  六、图像重建

图像投影重建基本原理,离散图像的傅氏变换重建法,卷积逆投影法,

扇形投影的滤波逆投影法,代数重建法。

关于目标的三维形状感知,运动分析,空间定位等理论和方法是机器视觉涉及的主要内容。

  七、图像复原、图例合成、

  图像存储和传输、图像获取、

  目标检测、图像表示与描述、

  图像配准、图像分类与识别、

  图像理解、场景分析和理解、

  图像数据库的建立索引检索以及综合利用

  八、图像复原

噪声干扰和模糊。可用逆滤波、维纳滤波、

最小约束二乘方滤波、同态滤波方法去除。

参考文献:

1、《图像处理》,孙即祥,科学出版社,2004年9月第一版
2、《数字图像处理》,姚敏等,机械工业出版社,2006年7月第一版
3、《数字图像处理》(第二版),Rafael C. Gonzalez,,Richard E. Woods,冈萨雷斯,电子工业出版社,2004年6月

 

 

 
2009-02-07 10:54


  一、图像增强


对比度增强,直方图均衡化,直方图匹配(规定化),

直方图统计学,直方图修正,平滑,

锐化,同态增晰,几何校正,

伪彩色假彩色,图像间的算术运算。

用算术逻辑操作增强(图像减法处理,图像平均处理)。

平滑空间滤波器(平滑线性滤波,统计排序滤波)。

锐化空间滤波(拉普拉斯算子,梯度法)。
频率域图像增强(理想低通滤波,巴特沃思低通滤波,高斯低通滤波)。同态滤波。

 

---------------------------------以下为具体内容-------------------

在邻域内实现增强操作常利用模板与图像卷积来实现。模板实际上是一个小的(如3*3)二维阵列,模板中各元素的取值确定了模板的性质,如图像平滑、锐化等。这种模板操作常称为空间滤波。

直接灰度变换:图像求反,线性灰度变换,对数变换(可动态压缩),灰度切割(增强特定范围的对比度),位图切割(多个位表示灰度值,每个像素由8位表示时,就说图像有8个位平面)。

直方图修正:表示数字图像中每一个灰度级与该灰度级出现的频率之间的统计关系。

直方图均衡化(若一幅图像其像素占有全部可能的灰度级并且分布均匀,则这样的图像有高对比度和多变的灰度色调,而显示出一幅灰度级丰富且动态范围大的图像。此方法仅依靠输入图像的直方图的信息可达到这一效果。这个方法的基本思想是把原始图像不均衡的直方图变换为均匀分布的形式,这样就增加了灰度值的动态范围,从而达到增强图像整体对比度的效果。

优点是能自动增强整个图像的对比度,但它的具体增强效果不易控制,处理的结果也是得到全局均衡化的直方图。)

直方图规定化(有时需变换直方图,使之成为某个特定的形状,从而有选择地增强某个灰度值范围内的对比度。

三个步骤:(1)均衡化。(2)同样对规定图像计算能使规定的直方图均衡化的变换。(3)将第一步的变换反转过来,即将原始直方图对应映射到规定的直方图。)

空间滤波增强:在图像空间中借助模板进行邻域操作完成。可分为线性滤波和非线性滤波。平滑滤波和锐化滤波。

平滑滤波器的作用是模糊处理和减少噪声。

线性平滑滤波:用滤波模板确定的邻域内像素的平均灰度值去代替图像中的每一个像素点的值。

中值滤波。

锐化滤波:防止图像模糊。使边缘和轮廓线模糊的图像变得清晰,使其细节更加清晰。梯度算子法,拉普拉斯算子法。

 

频域滤波增强:

卷积过程:将图像模板在图像中逐像素移动,并对每个像素进行指定数量的计算。

低通滤波:图像中的边缘和噪声对应于傅里叶变换中的高频部分。

巴特沃斯低通滤波:

高通滤波:

带通和带阴滤波:带通滤波器允许某个频率范围内的信号通过,而阻止其他频率范围的信号通过。与此相反,带阻滤波器阻止某个频率范围内的信号通过,而允许其他频率范围的信号通过。

同态滤波:在频域中同时将图像亮度范围进行压缩和将图像对比度增强。

---------------------------------------------------------------------

---------------------------------------------------------------------

---------------------------------------------------------------------


  二、图像恢复


降质模型,频域中的恢复方法,约束和无约束的最小二乘估计,

线性或非线性的均方估计,最大熵恢复,图像恢复的代数方法,

运动模糊恢复,盲恢复。

噪声模型。噪声存在下的惟一空间滤波复原(均值滤波,顺序统计滤波,自适应滤波,频域滤波)。

削减周期噪声(带阻滤波,带通滤波,陷波滤波,最佳陷波滤波)。

线性、位置不变的退化,图像观察估计法,试验估计法,模型估计法。

逆滤波。维纳滤波。几何均值滤波。几何变换。

---------------------------以下为图像恢复的具体内容--------------------

图像品质的原因。

图像退化模型是关键。

无约束和有约束两类。自动和交互。频域和空域。

连续函数退化模型:将线性系统理论中的单位冲激信号进行应用。

离散的退化模型:使用离散卷积的矩阵计算。求原始图像的计算量很大,需用循环矩阵对角化。

退化函数的估计:图像复原的主要目的是给定退化图像g(x,y)和退化函数H、噪声的假设,估计出原始图像f(x,y)。

而退化函数 H 需要估计。

估计方法:图像观察估计法;试验估计法;模型估计法。

消除匀速运动模糊。

维纳滤波:逆滤波比较简单,但没有清楚说明如何处理噪声。而维纳滤波综合了退化函数和噪声统计特性两方面进行复原处理。

维纳滤波是寻找一个滤波器,使得复原后图像和原始图像的均方误差最小。维纳滤波器通常又称为最小均方误差滤波器。

维纳滤波,存在的问题:

(1)需要知道未退化图像和噪声的功率谱,但一般不知道。

(2)维纳滤波建立在最小化统计准则的基础上,它所得到的结果只是平均意义上的最优。

约束最小二乘方滤波:其一,只要求噪声方差和均值的知识,而这些参数经常能从一幅给定的退化图像计算出来;其二,约束最小二乘方滤波对于所处理的每一幅图像都能产生最优的结果。

从噪声中复原:起因于图像获取和图像传输过程。通常认为噪声是由概率密度函数PDF表示的随机变量。

通常的噪声:高斯噪声,瑞利噪声,伽马噪声,指数噪声,均匀噪声,脉冲噪声。

空域滤波复原:均值滤波器,顺序统计滤波器,自适应滤波器。

均值滤波器包括:算术均值滤波器,几何均值滤波器,谐波均值滤波器,逆谐波均值滤波器。

顺序统计滤波器:其输出基于由滤波器包围的图像区域中像素点的排序,滤波器在任何点的输出由排序结果决定。有中值滤波器,最大值滤波器,最小值滤波器,中点滤波器。

自适应滤波器:

几何失真校正:从广义上说是一种图像退化。几何失真校正包括如下两个步骤:

空间变换:恢复原空间关系。

灰度插值。对空间变换后的像素赋予相应的灰度值以恢复原位置的灰度值。

几何失真图像配准复原。

---------------------------------------------------------------------

---------------------------------------------------------------------

---------------------------------------------------------------------



  三、图像分割

根据灰度分割,边界检测的基本方法,拟合曲面求导法,

高斯平滑滤波求导法,统计判决法,分裂--合并算法,

跟踪技术,模糊数学方法,模型化和统计检验法,

松驰标记法,匹配检测技术,活动轮廓模型法,

基于模式识别检测法,基于视觉特性检测法。

间断检测。边缘连接和边界检测。

门限处理(基本全局门限,基本自适应门限,最佳全局和自适应门限,基于不同变量的门限)。

基于区域的分割(区域生长,区域分离和合并)。

基于形态学分水岭的分割(水坝构造,分水岭分割算法)

---------------------------------以下为具体内容-------------------

 

图像识别的基础是图像分割,其作用是把反映物体真实情况的、占据不同区域的、具有不同特性的目标区分开来,并形成数字特征。

图像分割是图像识别和图像理解的基本前提步骤,图像分割质量的好坏直接影响后续图像处理的效果,甚至决定其成败。

 

图像分割是指将一幅图像分解为若干互不交叠的、有意义的、具有相同性质的区域。

好的图像分割具有以下特征:

(1)分割出来的各区域对某种性质(例如灰度、纹理)而言具有相似性,区域内部是连通的且没有过多小孔。

(2)相邻区域对分割所依据的性质有明显的差异。

(3)区域边界是明确的。

 

边缘是一个区域的开始,是另一个边缘的结束。

基于一阶导数的边缘检测算子包括:ROBERTS算子,SOBEL算子,PREWITT算子。还有拉普拉斯算子,LOG算子,CANNY算子。梯度算子。高斯--拉普拉斯算子。

边界跟踪:获得的边缘点有可能是不连续的,必须通过边界跟踪将它们转换为有意义的边缘信息,以便于后续处理。

 

边界跟踪三个步骤:(1)确定边界的起始搜索点。(2)确定合适的边界判别准则和搜索准则。(3)确定搜索的终止条件。

 

霍夫变换:HOUGH变换可以用于将边缘像素连接起来得到边界曲线,它的主要优点在于受噪声和曲线间断的影响较小。

 

阈值分割:经典方法是基于灰度阈值的分割方法,它通过设置阈值,把像素点按灰度级分若干类,从而实现图像分割。

人工选择法:

自动阈值法:通常使用灰度直方图来分析图像中灰度值的分布,结合特定的应用领域知识来选取最合适的阈值。

最小误差阈值选择法:通常以图像中的灰度为模式特征,假设各模式的灰度是独立同分布的随机变量,并假设图像中待分割的模式服从一定的概率分布,则可以得到满足最小误差分类准则的分割阈值。

分水岭算法:图形看作拓扑地形图。灰度值看做对应地形高度值。

区域分割:认为分割出来的属于同一区域的像素应具有相似的性质,其概念是相当直观的。

传统的区域分割法:区域增长法,区域分开合并法。是一种迭代方法,空间和时间开销比较大。

运动分割:

背景差值法:假定图像背景是静止不变的,将每一帧图像的灰度值减去背景灰度值可得到一个差值图像。

图像差分法:图像背景不是静止。

基于光流的分割方法:

基于块的分割方法:

 

 

 

 

---------------------------------------------------------------------

---------------------------------------------------------------------

---------------------------------------------------------------------

 

  四、图像表示与描述

链码,多边形近似,

标记图,边界线段,骨架。

边界描绘子:形状数,傅里叶描绘子,统计矩。

区域描绘子:拓扑描绘子,纹理,二维函数矩。

运用主分量进行描绘。关系描绘。)

---------------------------------以下为具体内容-------------------

图像表示可以基于其内部特征,也可以基于外部特征,由此可将图像表示分成边界表示(如链码,边界分段等),和区域表示(如四叉树、骨架)两大类。

通常,边界表示较为关心的是图像中区域的形状特征,而区域表示则倾向于反映区域的灰度、颜色、纹理等特征。

描述方法:边界描述,区域描述。

三维:体积描述,表面描述,广义圆柱体描述。由二维组成。八叉树。广义锥。

下面讨论如何把图像低层处理之后的图像特征转换成有意义的几何表示。

四种边界表示:链码,边界分段,多边形近似和标记图。一种区域表示:骨架。

边界描述:

区域描述:

形态学描述:膨胀和腐蚀,开启和闭合,

 

---------------------------------------------------------------------

---------------------------------------------------------------------

---------------------------------------------------------------------





  五、图像编码

冗余编码、变换编码、小波变换编码、

神经网络编码、模型基编码。离散信源编码定理。

赫夫曼编码,香农--范诺编码,算术编码,行程编码。

LZW算法,预测编码(无损预测编码,有损预测编码),

变换编码,基于矢量量化技术的图像编码。

小波图像编码。

------------------------------以下为具体内容--------------------

以前一篇博客中的问题的答案:

  一幅512*512像素,8B/像素的黑白图像,占256KB磁盘空间。

  一幅512*512像素,每分量8B/像素的彩色静止图像,占3*256=768KB的磁盘空间。

  如果以每秒24帧传送此图像,则一秒钟的数据量=24*768KB=18?5MB.

冗余:空间冗余,时间冗余,结构冗余,信息熵冗余,知识冗余,视觉冗余。

图像的编码质量评价:

  可逆编码和不可逆编码。压缩前后的图像严格相同否。

不可逆编码:有失真压缩编码,熵压缩编码,有损压缩编码。

客观评价准则;主观评价准则。

压缩比。

信息理论基础与熵编码:

  离散信息源的熵表示。

  离散信息源编码定理:(1)香农信息保持编码定理。(2)变长编码定理。(3)变长最佳编码定理。

  赫夫曼编码。和《数据结构》课程中内容相近。

  香农--范诺编码。基于统计的变长编码算法,与HUFFMAN编码没有本质的区别。

算术编码:

  不是将单个信源符号映射成一个码字,而是,将整个信源表示为实数0到1之间的一个区间,其长度等于该序列的概率。再在该区间选择一个代表性的小数,转化为二进制作为实际的编码输出。

  消息序列中的每个元素都要缩短为一个区间。消息序列中元素越多,所得到的区间就越小。当区间变小时,就需要更多的位数来表示这个区间。

  采用算术编码,每个符号的平均编码长度可以为小数。

行程编码:RUN LENGTH ENCODING,RLE。利用空间冗余度压缩图像的方法,对某些相同灰度级成片连续出现的图像,是一种高效的编码方法。特别对二值图像显著。

  主要用在公用电话网上传真二值图像。

LZW算法:LEMPEL-ZIV-WELCH,对信源符号的可变长度序列分配固定长度的码字,且不需要了解被编码信源的概率情况。

  基本思想是建立一个编码表(WELCH称之为串表),将输入字符串映射成定长的码字输出,通常码长设为12比特。如果将图像当做一个一维的比特串,编码图像也视为一个一维的比特串,算法在产生输出串的同时更新编码表,这样编码表可以更好地适应所压缩图像的特殊性质。

预测编码:PREDICTIVE CODING。建立在信号数据的相关性上。它根据某一模型,利用以前的样本值对新样本进行预测,以此减少数据在时间和空间上的相关性,从而达到压缩数据的目的;但在实际预测编码时,一般不是建立在数据源的数学模型,而是基于估计理论、现代统计学理论,这是因为数据源的数学模型很难建立,有时根本无法得到其数学模型。

  在图像编码中有DPCM(DIFFERENTIAL PULSE CODE MODULATION,差分脉冲编码调制)。

无损预测编码:预测编码的基本思想是通过对每个像素中新增的信息进行提取和编码,以此来消除空间上较为接近的像素之间的冗余。这里新增信息是指像素实际值和预测值之间的差异。

有损预测编码:在前述模型上加一个量化器。(1)德尔塔调制。(2)最优量化器。(3)最佳线性预测器。(4)线性自适应预测编码。

  以上讨论的图像编码技术,都是直接对像素空间进行操作,称为空域方法。

  变换编码:

图像数据一般具有较强的相关性,若所选用的正交矢量空间的基矢量与图像本身的主要特征相近,在该正交矢量空间中描述图像数据则会变得更简单。图像经过正交变换后,把原来分散在原空间的图像数据在新的坐标空间中得到集中。对于大多数图像,大量变换系数很小,只要删除接近于零的系数,并且对较小的系数进行粗量化,而保留包含图像主要信息的系数,以此进行压缩编码。在重建图像进行解码(逆变换)时,所损失的将是一些不重要的信息,几乎不会引起图像的失真,图像的变换编码就是利用这些来压缩图像的,这种方法可得到较高的压缩比。

变换编码首先将一幅N*N的图像分割成(N/n)^2个子图像,然后对子图像进行变换操作,解除子图像像素间的相关性,达到用少量的变换系数包含尽可能多的图像信息的目的,接下来的量化步骤,是有选择地消除或粗量化带有很少信息的变换系数,因为它们对重建图像的质量影响很小。最后是编码,一般用变长码对量化后系数进行编码。解码是编码的逆操作,由于量化是不可逆的,所以在解码中没有对应的模块,其实压缩并不是在变换步骤中取得的,而是在量化变换系数和编码时取得的。

  变换选择:取决于可允许的重建误差和计算复杂性。

  基于矢量量化技术的图像编码:

矢量量化(VECTOR QUANTIZATION,VQ)技术是一种有损压缩技术,它根据一定的失真测度在码书中搜索出输入矢量失真最小的码字的索引,传输时仅传输这些码字的索引,接收方根据码字索引在码书中查找对应码字,再现输入矢量。

  变换选择:

---------------------------------------------------------------------

---------------------------------------------------------------------

---------------------------------------------------------------------

----------------------以下内容未补充---------------------------


一、二、三、四、五项,可“望文生义”。


  一、图像分析

边缘检测、区域分割、特征抽取。

  二、图像识别

统计、句法(结构)、模糊识别法。

  三、图像变换
傅里叶变换,余弦变换,沃尔什--哈达玛变换,奇异值分解,KL变换,对数变换,幂次变换,分段线性变换。

  四、图像分析与描述

灰度幅值与统计特征描述,边界点集组织与曲线描述,闭合曲线的傅氏描述,

区域和曲线角点提取,区域拓扑特性,区域的矩描述,

区域主轴,区域等效椭圆,区域几何特性,

区域四分树方法,区域中轴,区域扩展与收缩,

区域曲线表示,区域纹理特性,图像的关系描述。

  五、图像数据压缩

轮廓编码压缩,行程编码压缩,预测误差编码压缩,

正交变换编码压缩,自适应编码压缩,混合编码压缩,

子带编码技术,人工神经网络技术,分形几何理论压缩,小波理论压缩。

编码冗余,像素间冗余,心理视觉冗余,

保真度准则。变长编码,LZW编码,

位平面编码,无损预测编码。

有损预测编码,变换编码,小波编码。图像压缩标准。

  六、图像重建

图像投影重建基本原理,离散图像的傅氏变换重建法,卷积逆投影法,

扇形投影的滤波逆投影法,代数重建法。

关于目标的三维形状感知,运动分析,空间定位等理论和方法是机器视觉涉及的主要内容。

  七、图像复原、图例合成、

  图像存储和传输、图像获取、

  目标检测、图像表示与描述、

  图像配准、图像分类与识别、

  图像理解、场景分析和理解、

  图像数据库的建立索引检索以及综合利用

  八、图像复原

噪声干扰和模糊。可用逆滤波、维纳滤波、

最小约束二乘方滤波、同态滤波方法去除。

参考文献:

1、《图像处理》,孙即祥,科学出版社,2004年9月第一版
2、《数字图像处理》,姚敏等,机械工业出版社,2006年7月第一版
3、《数字图像处理》(第二版),Rafael C. Gonzalez,,Richard E. Woods,冈萨雷斯,电子工业出版社,2004年6月

 

 

 
2009-02-07 10:53

有三个事情:

一、《高级计算机网络》、《数值分析》要拿高分和过关。

二、学院教学会议征文要求入选两篇以上。

拟求的题目有:《科研团队建设中几个问题的探讨》

《计算机网络课程教学面向工程实践的提高》

《计算机水平资格考试培训的规划》

《怎样提高数值分析课程在计算机专业课程中的地位》

三、安全认证论文

 

 

 

还有计算机制问题的研究。

图形图像比较

1、色块间的比较。图形由色块组成,许多线条间是由色块填充的,色块的色彩度是渐变的。

是由点坐标和色彩值组成的彩色点数据对,这些数据对又组成色块矩阵。很多情况下,是稀疏矩阵。

要根据稀疏情况,随时调整比较策略。这样,可以极大地缩减时间和空间开销吧。

这里应该有论题,还需要时间考虑。下面多处用到此语,绝大部分论题可能难度不高,但都可深入研究,而且有些论题可能合并。

 

2、主要部分的比较。比如指纹,比如虹膜,其图形是有主次的分别的,而且指纹会有肌肉的层次感的色彩。

不必要从一开始就从左顶开始进行扫描,直到右底部。就会涉及到图形的意义和预先的组织。根据意义来进行比较。

所谓意义,暂时想到的是,每类图形,象指纹图形,有它的组织结构。对于用人眼来观察来说,很容易“一眼就看出”哪两种图形是不一样的,象对图形同一位置的色彩的比较判断。怎样才能模仿人眼的这种能力呢?

当然,说白了,都是进行数据的比较,但是,选择哪些数据集合进行比较,是个关键问题。

这里应该有论题,还需要时间考虑。

3、线簇的比较。考虑由分段函数来描述,原图形中的线条要来比较时,就不需要线条的每个点都要比较。

任何图形中,经常会有“特别鲜艳,特别浓”的部分,这是人眼判断的标准,而计算机进行快速比较,又是根据什么数据特征呢?

这里应该有论题,还需要时间考虑。

4、提高速度的算法。仔细分析下去、进行下去,会有许多问题。第一,是图形上下文相关的。第二,是

5、比较产生的误差。图形识别和比较具有怎样的称之为误差的东东。

误差概念的诸多形式,误差的概念,指源和宿图形的不同的程度,其内涵可能非常丰富。

识别目标函数。优化问题。

这里应该有论题,还需要时间考虑。

6、比较的存储效率。比较过程不一定是完全随机的。有的可能只需要比较点,有的则可能需要比较分辨率和色彩度。

7、整体比较的策略。一种策略是随机抽取图形的有限个数的点,源和宿进行比较。

这里应该有论题,还需要时间考虑。

8、迅速排除相同情况的策略。例如,将源图形的一部分进行尽量少失真的求和类型的操作,对此部分产生的数据进行压缩,然后,将源和宿的压缩数据进行比较即可。

这里应该有论题,还需要时间考虑。

9、由于是线性处理器,比较的先后。一般的处理器都必然是线性的。而此处要考虑有图形协议处理器,和处理器中含有图形处理阵列的情况,也就是图形运算指令和一般指令可以并行进行的。

要考虑通用GKS的指令系统的设计问题。

10、比较元素的选择,和调整。如何截取图形部分进行比较。

11、强化。将某个局部放大,进行仔细比较,以便求异。在识别的目标限制下进行,不需要进行超限度的比较。而且源图形和目标图形一般不会全部相同。

这里应该有论题,还需要时间考虑。

 

12、将分辨率、色度级别降低,迅速进行求异操作。如果在模糊程度上都不能比较合格,则必然比较失败。但有个“度”的问题。

这里应该有论题,还需要时间考虑。

13、类异或操作,将异或操作复杂化、多样化,并组合为函数。

14、衡量时间开销大的比较运算,设计底层函数。可以建立历史数据库,看哪些类型的图形(先压缩形式来指认),时间开销大,也就是省去人工筛取的部分工作。

这里应该有论题,还需要时间考虑。

15、图形比较识别过程。有一个决定识别过程的策略。对识别过程在不同的需求和任务中的实现进行详细的讨论。

这里应该有论题,还需要时间考虑。

16、中间结果处理及策略。中间结果一般指比较成功时产生的数据。

17、性能估算,评价。匹配度。时间开销。空间开销。稳定性(前后两次以上的比较,其结果应该基本不变)。

这里应该有论题,还需要时间考虑。

18、策略的自调整,比较的自适应。比如,长时间遇到无意义数据的比较都成功时,就从另一地方开始进行比较。

这里应该有论题,还需要时间考虑。

19、空间管理。有许多事情可以做。空间问题在需要大量存储器的场合很重要。想方设法只在内存中比较。估算一下,1024*768,乘2^20(一兆BYTE来表示一个点的色彩),一个彩色点至少要10GB=2 ^ 39=2^10 * 2^9 * 2^20,不大可能到这样大的量,具体不知是怎样处理的。注,网吧的机器不太行,有些打不出。

20、时间管理。主要指处理器管理。提高速度的话,会有减弱通用性的问题。

21、可能要涉及搜索,涉及回溯。类似二叉树搜索的问题,人工智能与或树搜索的问题。

22、图形处理函数的移植性问题。

 
2009-02-07 10:53

1、是彩色的。有固定级别的彩色数。

2、纹路之间的其它图形特征也是要识别的。因为这些特征不会轻易改变。特征精确到什么程度,使得将来进行登录比较时的速度可以容忍,并且存储的容量可以接受。

有些银行系统可能涉及到大量客户的指纹。

还有些如警察系统中,尽可能多地保存社会人群及其指纹信息,其数据库中数据库量可以非常庞大。

这种指纹图形数据库,不大可能和通常的二维表数据库,多维数据库一样,其存储,查询,增加,删除,修改,创建,检索,索引等操作,可能不一样。

它的数据库理论可能也不一样。例如,可能是基于模糊数据库的。

3、为什么象农行保险柜是采用红色光?然后反射到图形采集传感器。这个指纹采集传感器是不失真地采集信息。

这种传感器,是光敏传感器,将一定频谱,一定频率范围的光(不一定是可见光),通过能量转换功能(根据传感器SENSOR的设计原理,它就是进行信号转换的,有特定的转换函数和公式),转换成电信号,并进行放大,数字化,编码,不失真地传输到PC机。

一般会涉及到模数A/D转换和数模转换D/A转换。

不同的能量形式中存储的信息也是不一样的。尽量使必须进行的能量转换过程,不失真。

衡量不同能量形式中的信息,是有各种理论和技术的吧。

4、驱动程序:把指纹采集设备连接到WINDOWS上。PC机上的图像控制软件,如慧声慧影,可以控制DV等采集设备的各种动作,主要就是控制能够正确、完备、精确、连续地读取采集设备来的数据。

5、图形的文件格式。设计这种文件格式的原则。

6、PC机和采集设备通信的协议。并且是PNP?

7、重点:客户要用保险柜进行指纹认证时,和大量存储的指纹库中的指纹的比较。

 

8、至于连续识别问题,现在有许多摄像机DV,应该是可以和通常几十元的摄像头CAMERA一样,可以连接到PC机,进行连续的图像采集的。

它的文件格式,它的驱动程序,它和PC的通信协议,有些并不公开。但文件格式一般至少有其公司的标准,更好的是国家标准和国际标准。

通信协议可以测试和破解。

而它的嵌入式系统的数字信号处理芯片,多半有自主知识产权。如果是连续图像处理,一般会用到DSP数字信号处理技术。

 
2009-02-07 10:52

这些技术,都是建立在图形学之上的。当然,不是完全依靠图形学。

除了上述的技术之外,还有图形数据库,应用在GIS,GPS等领域。

工作流。

因为许多技术涉及敏感数据,所以,信息安全技术在其中的广泛应用,是必须的。

===有这个考虑:

第一,这些技术有面向公司,有面向研究部门,有面向教育培训部门,实用性比较强。大部分的现有的技术比较成熟,就我所知,一般没有针对信息安全的研究应用,所以,有很多事情可以做。

第二,不缺乏有实际开发和应用的人员。

第三,假设从原型开发,对于将来技术推广,是非常可行的。也容易申请到相结合领域的专利。

 
2009-02-07 10:51

不同于处理算法方面的问题。

一、层次化图形处理体系。

主要指图元的层次化。

需要在可用性和速度之间权衡。

二、图形处理指令集的确定。

功能扩充的图形处理指令。

 

三、图形工具箱的自适应性和可扩展性。

四、比较、确认绘图效果。

局部的组成图元达到效果,同时能合乎要求地处理典型的复杂图形图像。

给出一些基准图形图像,它们代表图形处理的综合性能,得到相应的绘制评价数据。

第二步,使用新的绘制技术绘制基准图形图像,和前述的评价数据进行对比。

五、VC汇编指令问题。

充分利用CPU的处理能力。

六、VC和JAVA等绘图处理函数的横向比较。

七、对图形处理函数的评测。

八、由:图形处理的需求分析,到----- 图形处理命令(可以是语言命令),

到----- 调用图形处理函数有序集合,到----- 图形生成与确认。

九、画法几何的难点。

听过南京理工大学,好象是此名,某个高中是同学的,他说,制图学中最难学的,有画法几何。

 
2009-02-07 10:50

这个组合型研究有三方面的考虑:

1、信息安全用于图形处理。即图形学和计算机辅助设计系统中的信息安全问题,如果PDM,工作流,多维数据库的信息安全问题。

2、图形学本身的一些难题可用于信息安全。

3、图形学本身的一些技术(如数字水印),被信息安全利用。

……想来应该够《国家自然科学基金项目》的份量,它和以往的申请书最大的不同是有一份申请报告,而且主要是这份报告。

===

 

 

一、曲线和曲面用于信息安全的情况很多。象样条曲线。

二、椭圆曲线是否某种类型的图形学可处理的曲线?适合信息安全的曲线应该还有多种。

三、阈下信道,即在普通的图像图形中隐藏机密信息。不知道它的存放位置和存放规律,则读不出。

还有能够存储信息的上下限问题;

四、虚拟实体:图形化问题;仿真;变形(有攻防信息时;每种实体的不同特征表示)。

五、数字签名和数字水印:可否用于此类情况?因为显示水印的数据通过了公钥加密。

 

这样,使信息安全的问题描述和信息交流明晰化。

六、并行机有互连网络,和交换机有交换网络问题。混洗网shuffle-exchange,C-CUBE网,PM2I网,

七、UML和PETRI网,是平面的。显然可以处理信息安全数据。

看过PETRI网的一本书,似乎它研究“网理论”,而信息安全的物理基础,本身就是基于计算机网络的。

===

湖南省科技计划项目申请书

项目名称

1、单位情况,2、项目情况?技术水平?项目主要优势,3、项目成员,

4、立项依据?项目提出的背景和必要性,国内外现状和技术发展趋势(限300字以内)?现有工作基础、条件与优势(限300字以内)

5、技术路线

?主要研究内容(包括项目技术关键及创新点、主要目标等)(限500字以内)

?项目技术路线和组织实施(限500字以内)

??项目技术路线(限250字以内)??项目组织实施(限250字以内)

6、市场分析?市场需求预测及对相关产业发展的促进与带动作用(限400字以内)

?对环境的影响及预防治理方案(限200字以内)

7、项目指标?项目现有年度指标?项目完成时实现指标?项目完成时预期的主要技术成果(限200字以内),

8、投资预算,9、项目进度,10、摘要?重大专项可行性分析报告,11、附件清单

 
2009-02-07 10:49

在信息安全的应用中,如防火墙。又如入侵信息的目测。察觉访问控制和认证操作的比例。

操作:放大,多维到三维、二维,

问题一:怎样收集网络数据信息。

问题二:哪些维。

问题三:曲面表示的其它用途。

问题四:曲面的显示效率和显示算法。

问题五:从多个角度看曲面。

问题六:曲面描述的丰富化,例如厚度的不同,色彩的不同。

问题七:网络化、协同化绘制曲面。

 

 

问题八:由体到面的问题。是现实中面的虚拟化和简化。

问题九:在在军工和民用有广泛用途的WSN虚拟传感器网络中,曲面的运用。

人眼可观察到的计算机图形表示的实体,是用曲面和平面、直线和曲线、点和点集组成。

问题十:图形图像识别。例如,公安系统罪犯识别和失踪人员搜寻。

问题十一:现实世界自然图像怎样用计算机软件处理,发现可匹配经验库和知识库的图形图像单元。

问题十二:观察角度转换时,怎样利用和变换已有的图形图像历史数据,便于快速生成。

问题十三:曲面由子集组成,汇总地绘制。

问题十三:曲面根据曲线函数绘制。

问题十四:曲面各个子集的图形化关系表示,对绘制的效果。

问题十五:编程环境:OPEN GL似乎是个标准函数库。还有JAVA 2D,JAVA 3D。MATLAB的参考对比。

问题十六:各AGENT自主地感知、绘制。

问题十七:此类AGENT的特点和原理。

问题十八:复杂系统曲面或,复杂曲面系统中,有哪些AGENT体系。

问题十九:此类AGNET的语言系统、通信系统。

问题二十:此类AGENT系统,可能需要方便协同决策,各决策方案组成人员,可随意

生成、

选取、

综合、

分解、

优化、

通知、……一句话,方便形成清晰准确、稳定、自适应地解释执行、迅速的决策方案。

其中,此类智能知识处理系统,能够辅助决定,哪些由人手工鼠标方式、键盘录入方式参与,或者有参数的程序控制方式。

加速曲面知识的利用。

问题二十一、曲线到曲面的转换理论。针对实际的实现系统。C,C++,JAVA。

问题二十二、不会利用全面的曲面知识。比如,只“看”重点,得到“关键”数据。

问题二十三、收集网络数据。

问题二十四、“指导”网络程序工作。

问题二十五、网络物理特性对协同图形图像处理的影响理论。

问题二十六、用于图形图像加速处理的集群系统、分布式系统理论。

问题二十七、分布式系统的单机模拟,实际环境验证。

问题二十八、模拟与仿真。

问题二十九、设计模拟和仿真系统的原理,可“由此可实现,证明彼亦可得”。不一定要实际购买昂贵设备。

问题三十、再提WSN无线传感器网络中,关于曲面和由曲面构成的体的问题:

1、同类的传感器,不同的传感器。

2、感知有范围。是“什么样的体”,最外围是怎样的“面”,随着WSN控制核心能源性能下降的问题,随着"HUB"传感器能源性能下降的问题。

3、如何设计虚拟系统:WSN要感知,要“交流”发送“必须且只须”的数据,……

4、WSN中的曲线和曲面。

5、WSN中曲面的交叉与集合论相关的理论到实际系统中的应用。

问题三十一、我所理解的WSN无线传感器网络:

1、功能范围。

2、功能边界。特定WSN的特定边界。

3、基于设计代价的功能边界。时间限制,能源限制,通信限制,计算能力限制,其它资源限制。会有什么限制,在设计WSN时。

4、在研究WSN时,在预研WSN的阶段的功能边界。

5、功能边界的各种维。

6、功能边界的各种维的图形图像表示与真实性、一致性、正确性、完备性、可信度。

问题三十二、当曲面的一点中的(X,Y,Z),不只是代表简单的坐标信息时。

问题三十三、曲面、曲面体之间的问题。当曲面之间的知识是由计算机解释和处理时。

问题三十四、曲面所代表的物体具有知识,不是由人观察和解释时。

问题三十五、曲面由于确定和不确定的因素,简单如外力作用,发生变形时。在WSN中,气流对信号也会有影响。

问题三十六、曲面体受外力的作用“变形”的情况,和WSN应该有一种非常紧密的联系。

===

在立体几何中,求曲面与XY平面围成的柱体的计算,是最广泛介绍的。

现实中,

关于曲面和曲面体的有效计算、快速计算、

准确计算、数值分析方面的计算、

根据有效显示进行的计算、根据充分显示进行的计算、

根据快速显示的计算、根据存储空间的计算、

根据同类曲面和曲面体共享数据的计算,

应该还有许多种以图形处理为目的的计算。

三十七、WSN中,在曲面的感知能力,是用于实际中很重要的一种能力。

要实时地确定这个由多个传感器感应范围组成的曲面,包括同类的、不同位置的,有很多重要用途。显然的,可以帮助定位。

三十八、WSN中的SENSOR部件,功能可能还可调,就更有许多可考察性了。

三十九、还有,测试SENSOR(可能有计算和存储能力)的感知范围。相当于围绕一个虚拟的曲面运动,大把的问题待解决。

模拟这种测试工具时,可以简单地用声波处理装置。

当然,声波有一点不同,它是定向的。而SENSOR呢?定向和球形采集有不同的利弊。后者消耗的电池功率可能要大很多,因为一般的,周围总是有信号的,总要进行信号从其它方式,转换成电信号方式的。

四十、曲面包含信息,处理过程中,有效信息率,类比于有效误差,比较公式。

四十一、曲面的观察点不同与信息加密。

四十二、曲面的观察点不同与信息隐藏。

四十三、曲面型物理结构的表面,信息的流动。迅速确定一条路径。计算机网络可表示成某种形式的曲面吗?

 
2009-02-07 10:49

识别的几种技术:

1、神经网络。通过已用于识别的数据集,对神经网络进行训练,确定其权值集合。使得此神经网络对于同类的待识别数据,进行识别时,输出相近的结果。

2、概率论方法。直观可以想得到:识别具有概率特性。

3、基于精确的数学和物理模型。同时,作出限制,限制确定目标是否达到的条件。

基本上,只要是通过此方法“计算(计算机处理的意思)”,就可确认目标是否达到。

4、知识。图形的各个部分及其关系,和组成的全部,可以表示成知识。例如,面部三角区的特征,例如,眼睛大小形状的特征,例如,关于比例关系的知识。

5、给出已知条件,施加限制条件集合,进行比较,这本身就是计算机能处理的一种“推理”。这种“推理”,能否总结出相关的数学理论、形式理论。

同样,图形和图像处理,如果是涉及到这类型的推理,应该也可以抽象出理论的集合。

 

~多幅参考图和一到两幅源图(罪犯作案图)。

~两类图形格式的统一,要求不失真。

~格式进行统一时,要求图形信息完全不多加和丢失,是不可能的。问题是保证识别目标达到的标准和限制。

~图形内的一些用于确定唯一性、“质的规定性”、“量的规定性”的数据数值特性。

~就图形内部各组成块之间的比例问题,可用《数值分析》进行分析的方面,有:

相关性,线性方程组。表示多组多种变量的线性相关。

DY/DX=F(X,Y),常微分方程的数值解。

~级数

1、利用DFT和FFT,图形信息用频率族表示,仅仅将图形变换,便于处理的一种形式。

频率表现,如光的频率族。

这里,先假设两类图形是同色彩类型的。

另一假设,是图形文件中的要素之一的色彩是很容易处理的。

总要便于快速处理。将周期函数表示成级数形式,求因变量值。

2、级数=周期函数,前数项的F,F’,F’’要相当,或者在规定的误差范围内。

误差又有范式,矩,误差公式,误差极限,误差的导数的形式表示。

3、多个两类图形的块对比,误差的分布函数。

4、均值。各种均值。

5、期望的形式。方差的形式。以及上述的矩的形式。

6、上述多种数学描述的数学统一形式。

~上述的图形识别的数学处理,其加速、评价。

~图形识别的置信度评价

神经网络似乎主要是0或者1。

这里,用得上模糊逻辑。

~整体的置信度。

~局部关键部位的置信度评价。

~图形识别的置信度,区别于专家系统中介绍的置信度,这里,应该如何定义,包括概念和定义的数学表达形式。

~置信度函数能否成簇?置信度是指导计算机如何进行下一步处理的标准,但不是作出完全准确的比较时。

~置信度有广泛的应用,能否集中几个博客页进行分析和理解、发掘?

--现在的问题是,通用的文件格式,如BMP,JPEG,都还没有去找,更谈不上试着去处理。

 
2009-02-07 10:48

按时间顺序,

~~在DOS下,文本模式显示围棋。7*9字符点阵,25*80行列模式。

其中的一个难点是,

ROM BIOS只有ASCII 256个字符的字符点阵数据,存储在ROM中。

黑白棋子的点阵数据,则是需要设计和扩展的。棋盘线的点阵也需要设计和扩展。

~~在DOS下,使用汇编语言,设置CGA,VGA,SVGA的显示模式。

包括汇编和C的混合编程。

~~PLOTTER,HP7475,7476?的图形文字标识,只能把英文字母显示在绘图纸上。

想了办法,绘制中文字母。用的是希望的200多KB的16*16点阵字库,它是按照区位码排列的。

~~曾经把北京希望电脑公司的一本《用C语言开发图形软件》中的数十个、数千行C图形处理程序,输入、编译、运行过。

印象最深的功能有,一个多面体在框架中摆动,每秒一次,或者可调。

CASE是TC。

~~曾经把二十五公司招待所里的长城电子服务部的一部显示器弄到黑屏。

~~之后用过IRIS工作站。模拟砌墙。好象很便利的说。

粗粗看了DONALD HEARN和M PAULINE BAKER的《计算机图形学(第二版)》,电子工业出版社。

介绍了OPEN GL,看了看网上的内容,似乎OPEN GL是一个函数库界面,具体可嵌入到不同的CASE中。

也就是OPEN GL的实现方式不同,有多种。

 
2009-02-07 10:47

一、 计算机辅助设计(CAD) 二、科学计算可视化
计算机辅助几何设计 三、虚拟现实多媒体技术
   几何造型与处理 四、计算机动画
五、 计算机集成制造 六、真实感图形
七、 虚拟设计与制造 八、非真实感图形
   网络化制造 数字媒体技术与数字内容处理
电子设计自动化(EDA) 图形图像融合技术人机交互技术
九、 图形学基础理论与算法 工程图形及应用
十、计算机图形仿真及与计算机辅助设计与图形学的相关的领域

设计和研究,是需要协同交互的,单纯的词语难以足够地表示所需的信息.

象,在化工专业研究分子"团"的相互作用关系,怎样组成新的无机物质,或者新的合成物质时.

计算机专业中,单靠FLASH,也比较抽象.

一、计算机辅助设计:

化学工程,物理工程,机械工程……

1、无机物分子材料,无机物合成的模拟。

物理工程:

2、结构与力学。应力等。膨胀,收缩,位移,支撑,作用与反作用,共振。

3、电子开关。

4、光开关。

5、液体阀门。

6、电磁作用与干扰模拟。

7、混合频率信号。

8、模拟信号到数字信号的转换。

9、类MATLAB的图形处理。

10、如对AUTOCAD先掌握。VISUAL LISP的问题。图形文件格式。

二、科学计算可视化

平面常见的有FLASH。至少实现FLASH的功能。同时要有立体效果。

1、立体感。2、观察点与距离感。3、参考点与参考轴。4、多角度光源与阴影。5、运动感。6、可透视。7、全景和鸟瞰图。

____________________________________________________________________________________________________________

____________________________________________________________________________________________________________

____________________________________________________________________________________________________________

1、偏微分方程组。

2、程序运行过程。CPU、内存、虚拟存储器。

3、操作系统资源调度算法。

4、国防科技大学三本关于现实模型的图形化。

5、PCB电路板的电信号作用图,电磁信号作用图。电磁场作用图。

6、概率分布。

7、排队模型。

8、统计分布。

9、误差表现。

10、DFT,FFT,TAYLOR级数。

11、框架内多个信息量的作用。

12、体积积分。

13、数值分析类。

 

 

 

三、虚拟现实多媒体技术

1、感知光源。

2、实体之间的光反射、漫射。通过光的互感。

3、实体的集合的动感与光的作用。例如,现实中的一丛树叶的光与影。

4、空间数据的收集。

5、基于材料表面的光特性。

6、虚拟实体在空间中的位置感、距离感。

 

 

 

----

上面谈论的是将达到的效果,类似于需求分析。

研究成体系的图形处理结构。

 
2009-02-07 10:47

一、曲面的实体化。

二、实体到面和线的变化。1、色彩。2、边缘浸透。3、粗细变化。明暗度,指光亮度的变化。

三、线和面构成实体。1、如何获得质感效果?2、影响质感的因素有哪些?

四、不规则曲面的快速绘制。

五、不规则曲面的快速绘制使用:1、快速填充。2、组合和构成。

六、实体边界的模糊化。如何使边界显得自然?

七、直线由粗到细的距离感。

八、水流、水滴、积聚到喷射、中心的水柱和边缘的水流、水花的溅起

1、喷射的影响因素

2、通过流体在实体表面的流动,方便人感知物体的形状等特性。

 

九、不规则物体的参照(象米粒落在光滑的表面)

 
     
 
 
文章分类
 
     
 
文章存档
 
     
 
最新文章评论
   
     


©2009 Baidu

<script src="http://msg.baidu.com/ms?ct=18&amp;cm=3&amp;tn=bmSelfUsrStat&amp;mpn=13227114&amp;un=ftai08"></script>

阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭