李航《统计学习方法》学习笔记——ch2感知机

本文详细介绍了感知机模型,包括感知机的定义、超平面、线性可分性、损失函数、感知机学习策略及原始形式和对偶形式的学习算法。通过对感知机的学习,了解如何利用该模型进行二分类线性划分。
摘要由CSDN通过智能技术生成

2.感知机

定义感知机(perceptron)是二分类线性分类模型,其输入为实例的特征向量,输出为实例的类别,取 + 1 +1 +1 − 1 -1 1二值,属于判别模型。
给定一个数据集
T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯   , ( x N , y N ) } T=\{ (x_1,y_1),(x_2,y_2),\cdots,(x_N,y_N)\} T={ (x1,y1),(x2,y2),,(xN,yN)} 其中, x i ∈ X = R n , y i ∈ Y = { + 1 , − 1 } , i = 1 , 2 , ⋯   , N x_i\in\mathcal{X}=R^n,y_i\in \mathcal{Y}=\{+1,-1\},i=1,2,\cdots,N xiX=Rn,yiY={ +1,1},i=1,2,,N

  • 补充知识
    • ℓ p \ell_p p范数
      ℓ p \ell_p p范数表示一组范数:
      ℓ p = ∣ ∣ x ∣ ∣ p = ∑ i = 1 n x i p p , x = ( x 1 , x 2 , ⋯   , x n ) \ell_p=||x||_p=\sqrt [p]{\sum_{i=1}^{n}x_i^p},x=(x_1,x_2,\cdots,x_n) p=xp=pi=1nxip ,x=(x1,x2,,xn) 常见范数
      (1) ℓ 0 \ell_0 0范数:即表示向量 x x x中非零元素的个数。 ℓ 0 = ∣ ∣ x ∣ ∣ 0 \ell_0=||x||_0 0=x0
      (2) ℓ 1 \ell_1 1范数:即表示向量 x x x中元素的绝对值之和。 ℓ 1 = ∣ ∣ x ∣ ∣ 1 = ∑ i = 1 n ∣ x i ∣ \ell_1=||x||_1=\sum_{i=1}^{n}|x_i| 1=x1=i=1nxi
      (3) ℓ 2 \ell_2 2范数:即表示向量 x x x中元素的平方和再开方(坐标点到原点的欧几里和距离)。 ℓ 2 = ∣ ∣ x ∣ ∣ 2 = ∑ i = 1 n x i 2 2 \ell_2=||x||_2=\sqrt [2]{\sum_{i=1}^{n}x_i^2} 2=x2=2i=1nxi2 注意: ∣ ∣ x ∣ ∣ ||x|| x表示 ℓ 2 \ell_2 2范数,只是把2省略了。

    • 超平面
      超平面是比所研究的环境空间低一个维度的子空间。例如二维空间平面,超平面就是一条直线。三维空间,超平面就是一个平面。
      超平面方程 w ⋅ x + b = 0 w\cdot x+b=0 wx+b=0,表示二维空间中的一个超平面,即对应一条直线。
      点与超平面的关系
      x 在 平 面 S 的 { 正 面 , w T ⋅ x + b > 0 平 面 上 , w T ⋅ x + b = 0 反 面 , w T ⋅ x + b < 0 x在平面S的\begin{cases} 正面,w^T\cdot x+b>0\\ 平面上,w^T\cdot x+b=0\\ 反面,w^T\cdot x+b<0\\ \end{cases} xS,wTx+b>0,w

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值