2.感知机
定义:感知机(perceptron)是二分类线性分类模型,其输入为实例的特征向量,输出为实例的类别,取 + 1 +1 +1和 − 1 -1 −1二值,属于判别模型。
给定一个数据集
T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯ , ( x N , y N ) } T=\{ (x_1,y_1),(x_2,y_2),\cdots,(x_N,y_N)\} T={
(x1,y1),(x2,y2),⋯,(xN,yN)} 其中, x i ∈ X = R n , y i ∈ Y = { + 1 , − 1 } , i = 1 , 2 , ⋯ , N x_i\in\mathcal{X}=R^n,y_i\in \mathcal{Y}=\{+1,-1\},i=1,2,\cdots,N xi∈X=Rn,yi∈Y={
+1,−1},i=1,2,⋯,N
- 补充知识
-
ℓ p \ell_p ℓp范数
ℓ p \ell_p ℓp范数表示一组范数:
ℓ p = ∣ ∣ x ∣ ∣ p = ∑ i = 1 n x i p p , x = ( x 1 , x 2 , ⋯ , x n ) \ell_p=||x||_p=\sqrt [p]{\sum_{i=1}^{n}x_i^p},x=(x_1,x_2,\cdots,x_n) ℓp=∣∣x∣∣p=pi=1∑nxip,x=(x1,x2,⋯,xn) 常见范数:
(1) ℓ 0 \ell_0 ℓ0范数:即表示向量 x x x中非零元素的个数。 ℓ 0 = ∣ ∣ x ∣ ∣ 0 \ell_0=||x||_0 ℓ0=∣∣x∣∣0
(2) ℓ 1 \ell_1 ℓ1范数:即表示向量 x x x中元素的绝对值之和。 ℓ 1 = ∣ ∣ x ∣ ∣ 1 = ∑ i = 1 n ∣ x i ∣ \ell_1=||x||_1=\sum_{i=1}^{n}|x_i| ℓ1=∣∣x∣∣1=i=1∑n∣xi∣
(3) ℓ 2 \ell_2 ℓ2范数:即表示向量 x x x中元素的平方和再开方(坐标点到原点的欧几里和距离)。 ℓ 2 = ∣ ∣ x ∣ ∣ 2 = ∑ i = 1 n x i 2 2 \ell_2=||x||_2=\sqrt [2]{\sum_{i=1}^{n}x_i^2} ℓ2=∣∣x∣∣2=2i=1∑nxi2注意: ∣ ∣ x ∣ ∣ ||x|| ∣∣x∣∣表示 ℓ 2 \ell_2 ℓ2范数,只是把2省略了。 -
超平面
超平面是比所研究的环境空间低一个维度的子空间。例如二维空间平面,超平面就是一条直线。三维空间,超平面就是一个平面。
超平面方程: w ⋅ x + b = 0 w\cdot x+b=0 w⋅x+b=0,表示二维空间中的一个超平面,即对应一条直线。
点与超平面的关系:
x 在 平 面 S 的 { 正 面 , w T ⋅ x + b > 0 平 面 上 , w T ⋅ x + b = 0 反 面 , w T ⋅ x + b < 0 x在平面S的\begin{cases} 正面,w^T\cdot x+b>0\\ 平面上,w^T\cdot x+b=0\\ 反面,w^T\cdot x+b<0\\ \end{cases} x在平面S的⎩⎪⎨⎪⎧正面,wT⋅x+b>0平面上,w
-