已知一个如图所示的训练数据集,其正例点是x1=(3,3),x1=(4,3),负例点是x3=(1,1),试求最大间隔分离超平面。

本文探讨了在给定训练数据集的情况下,如何求解最大间隔分离超平面。通过分析正例点和负例点的位置,采用两种方法来确定最优分类边界。方法一未详细描述,方法二利用中垂线原理,计算出经过特定点且具有特定斜率的直线方程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

已知一个如图所示的训练数据集,其正例点是x1=(3,3),x1=(4,3),负例点是x3=(1,1),试求最大间隔分离超平面。

在这里插入图片描述
从图中可以看出,x2不起作用,所以不用理会
方法1:
在这里插入图片描述
方法2:考虑求解中垂线方程即可
斜率:-k=-1,中点(2,2),
在这里插入图片描述
所以相当于求经过(2,2),斜率为-1的直线方程,为了和方法1的结果对应,最后两边同乘一个1/2
在这里插入图片描述

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值