贝叶斯分析——分布之分布(beta分布)

转自:http://blog.sciencenet.cn/blog-677221-1049350.html

贝叶斯与逆概率问题

对于“白球黑球”的概率问题。概率问题可以正向计算,也能反推回去。

(1)盒子里有10个球,黑白两种颜色,如果我们知道10个球中5白5黑,那么,从中随机取出一个球,这个球是黑球的概率是多大?

(2)假设我们预先并不知道盒子里黑球白球数目的比例,只知道总共是10个球,那么,随机地拿出3个球,发现是2黑1白。逆概率问题则是要从这个试验样本(2黑1白),猜测盒子里白球黑球的比例?

贝叶斯感兴趣的是反过来的问题(可称之为逆概率问题)逆概率问题,就是从样本数据来猜测概率模型的参数

为了解决逆概率问题,贝叶斯在他的论文中提供了一种方法,即贝叶斯公式:

后验概率 = 观测数据决定的调整因子×先验概率    (1)

根据贝叶斯公式,利用先验知识与观察数据一起,可决定假设的最终概率,以允许对某种不确定性逐步调整后验概率并做出最终的概率预测。

分布之分布

虽然大家都可以使用贝叶斯公式,但使用的方法却可以五花八门,一是确定先验概率的方法便有多种多样,二是要对未知的不确定性作出预测,那么,如何理解这种“不确定性”?这种不确定性是固有的客观存在吗?

比如说抛硬币实验,每次实验可以用随机变量X表示,X服从二项分布或伯努利分布。如何“猜测”抛硬币时正面出现的概率p?(1)频率学派认为模型参数p是固定的客观存在的

         频率学派对于p的估计:

        频率学派认为p有一个固定数值,也就自然而然地认为决定这个数值的比较好的方法就是多次试验,不停地抛硬币,记录其中正面出现的频率,实验次数足够大的时候,就能越来越逼近p的真实数值,比如说,抛了1000次,正面601次,得到频率p(1000)=0.601,大概可以预测p=0.6。

(2)贝叶斯学派则把模型的参数p也当作一个不确定的随机变量P,认为它符合某种分布。所以,对贝叶斯学派而言,硬币实验中有两类随机变量:硬币“正反”的一类随机变量X,和表征硬币偏向性的另一类随机变量P。因为P是建立在随机序列X的模型参数之上的随机序列,因此,其分布被称为“分布之分布”。

        贝叶斯学派对于p的估计:

        贝叶斯学派并不假定p有一个“客观”数值,而是认为p也对应一个随机变量Y,可以取0到1之间的任何值,但可能服从某种分布(均匀、正态、或其它),实验次数的增多可以对此分布的情况了解更多。这样一来,使用贝叶斯公式,便可以逐次修正Y对应的分布:

               后验概率分布 = 观测数据决定的调整因子×先验概率分布      

         将上式表达得稍微“数学”一点:

               P(Y|数据)   =    {P(数据| Y) / P(数据)} * P(Y)  =   似然函数* P(Y)                               (2)

               P(数据)可以暂不考虑,以后会放到概率的归一化因子中。

Beta分布

公式(2)中的P(Y)是先验分布,P(Y|数据) 是考虑得到了更多数据条件下的后验分布,P(数据| Y)是(正比于)似然函数。

以简单的“抛硬币”实验为例,首先研究一下似然函数。对硬币“正反”随机性X对应的二项离散变量,事件要么发生(p),要么不发生(1-p)。如果发生m次,不发生n次,似然函数的形式为:

Pm(1-p)n

如果我们能找到一种分布形式来表示先验分布,乘以似然函数后,得到的后验分布仍然能够保持同样的形式的话,便不仅具有代数公式的协调之美,也会给实际上的计算带来许多方便之处。

很幸运,beta分布就具有我们要求的性质。具有上述性质的分布叫做“共轭先验”,beta分布是二项分布的共轭先验:

f(x; a, b) =xa-1(1-x)b-1/B(a,b)                       (3)

beta分布用f(x;a,b)表示,其中的B(a,b)是通常的由gamma函数定义的beta函数,在这儿意义不大,只是作为一个归一化的常数而引进,以保证概率求和(或积分)得到1。

简单举例

事实上,仅仅从硬币物理性质的角度来看,频率学派的观点似乎言之有理。硬币正反面的偏向性显然是一种固定的客观存在。但是,除此之外,还有很多其它不确定性的情况,就不见得符合这种“参数固定”的模型了,比如量子现象是其中1例。下面再举一个简单例子:

用简单的“雨”或“无雨”来表示某城市气候中的“雨晴”状态。该城市已经有了10天的“雨晴”记录,其中3天有雨,7天无雨,因而可以由此记录得到一个beta先验分布:f(雨; 3, 7)。

然后,再过了8天之后,观测到了新的数据:其中7天有雨1天无雨,后验概率仍然是一个beta分布,不过参数有所改变:f(雨; 10, 8),见下图。

### 不同概率分布的概念及应用场景 #### 泊松分布 泊松分布是一种用于表示单位时间(或其他固定区间)内某事件发生的次数的概率分布[^1]。该分布适用于描述稀有事件的发生频率,即在给定的时间间隔或空间区域内,某个特定事件发生k次的概率。 - **概念**: 如果一个随机变量X服从参数为λ的泊松分布,则其概率质量函数定义如下: \[ P(X=k)=\frac{\lambda^{k}e^{-\lambda}}{k!} \] - **应用领域** - 生物学:预测细胞分裂的数量。 - 经济学:分析客户到达商店的人数。 - 计算机网络:评估每秒接收到的数据包数量。 #### 二项分布 当试验只有两种可能的结果——成功或失败,并且每次实验都是相互独立的情况下,可以用二项分布来建模成功的次数n次独立试验中有多少次成功的概率。 - **概念**: 设p代表单次试验的成功概率,在N次重复伯努利试验中恰好获得K次成功的概率由下面公式给出: \[ f(k; n, p)={n \choose k}p^k(1-p)^{n-k},\quad k=0,\ldots,n. \] - **应用实例** - 质量控制:检测一批产品中有缺陷的比例。 - 市场调研:估算选民支持候选人的比例。 - 游戏理论:计算抛硬币正面朝上的可能性。 #### Beta 分布 Beta 分布通常作为贝叶斯推理中的先验分布使用,尤其是在处理具有未知成功率的任务时非常有用。它能够很好地捕捉到不确定性程度的变化规律。 - **概念**: 形状参数α>0和β>0决定了Beta 分布的具体形式,其概率密度函数表达式为: \[ B(x;\alpha ,\beta )=\frac {x^{\alpha -1}(1-x)^{\beta -1}}{\mathrm {B} (\alpha ,\beta )} \] 其中$\mathrm {B}$ 表示Beta 函数。 - **实际用途** - 自然语言处理:估计单词出现的概率。 - 推荐系统:调整推荐列表以适应用户的偏好变化。 - A/B 测试:衡量新旧版本之间的性能差异。 综上所述,这三种分布各有特点,在不同场景下发挥着重要作用。选择合适的分布对于提高数据分析准确性至关重要。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值