目录
例题
01背包
有N件物品和一一个容量是V的背包。每件物品只能使用一-次。
第i件物品的体积是vi,价值是wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。
接下来有N行,每行两个整数vi,wi,用空格隔开,分别表示第i件物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000.0<vi,wi≤1000
代码:
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N = 1010;
int f[N][N];
int v[N], w[N];
int n, m;
int main() {
cin >> n >> m;
f[0][0] = f[0][1] = 0;
for (int i = 1; i <= n; i++) cin >> v[i] >> w[i];
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++) {
f[i][j] = f[i-1][j];
if (j >= v[i])f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);
}
int res = 0;
for (int i = 1; i <= m; i++)res = max(res, f[n][i]);
cout << res;
return 0;
}
详解
f[i][j]假设背包体积是8 ,现有4个物品,那么f[4][8]就是在f[3][8]、f[3][8-v4]+w4选最大的,然后f[3][8]、f[3][8-v4]+w4继续此操作,直至i、j一方为0,如果是f[4][7]的话,也是同上,并且因为7<8所以它能装的物品8也能装呀,而且8能装的物品7不一定能装。所以,体积为8所能装物品的种类(此时不管价值大小)应该是包含体积为7的,这样的话,体积为8所装的最大价值应该大于或等于体积为7的。
如此,将其写成如上代码的形式,便可计算出其最大价值是多少了。