01背包(c++)

目录

例题

代码:

详解

例题

01背包

有N件物品和一一个容量是V的背包。每件物品只能使用一-次。

第i件物品的体积是vi,价值是wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。

输出最大价值。

输入格式

第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。

接下来有N行,每行两个整数vi,wi,用空格隔开,分别表示第i件物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤1000.0<vi,wi≤1000

代码:

#include<iostream>
#include<algorithm>
#include<cstring>

using namespace std;

const int N = 1010;
int f[N][N];
int v[N], w[N];
int n, m;
int main() {
	cin >> n >> m;
	f[0][0] = f[0][1] = 0;
	for (int i = 1; i <= n; i++) cin >> v[i] >> w[i];
	for (int i = 1; i <= n; i++) 
		for (int j = 1; j <= m; j++) {
			f[i][j] = f[i-1][j];
			if (j >= v[i])f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);
		}
	int res = 0;
	for (int i = 1; i <= m; i++)res = max(res, f[n][i]);
	cout << res;
	return 0;


}

详解

f[i][j]假设背包体积是8 ,现有4个物品,那么f[4][8]就是在f[3][8]、f[3][8-v4]+w4选最大的,然后f[3][8]、f[3][8-v4]+w4继续此操作,直至i、j一方为0,如果是f[4][7]的话,也是同上,并且因为7<8所以它能装的物品8也能装呀,而且8能装的物品7不一定能装。所以,体积为8所能装物品的种类(此时不管价值大小)应该是包含体积为7的,这样的话,体积为8所装的最大价值应该大于或等于体积为7的。

如此,将其写成如上代码的形式,便可计算出其最大价值是多少了。
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

And ν

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值