目录
基本概念
二分查找是一种非常非常高效的查询算法,时间复杂度为O(logn)。
二分查找法(Binary Search)算法,也叫折半查找算法。二分查找要求数组数据必须采用顺序存储结构有序排列。查找思想有点类似于分治思想。每次都通过跟区间的中间元素对比,将带查找的区间缩小为之前的一半,直到找到要查找的元素,或者区间被缩小为0。
算法优点
优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而查找频繁的有序列表。
算法实现
首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。
例题
题目描述
已知有序表: 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1 ,要求输入需要查询的数据, 用折半查找算法, 查找该数在有序表中的位置.
输入
输入待查询的数据
输出
如果找到该数, 输出该数在有序表中的位置, 如果没有找到输入-1;
样例输入
15
样例输出
0
例题代码
#include<iostream>
using namespace std;
int main()
{
int a[15] = { 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1 },left=0,right=14,n;
cin >> n;
while (left <= right)
{
int middle = left + (right - left) / 2;
if (a[middle] < n)
right = middle - 1;
else if (a[middle] > n)
left = middle + 1;
else
{
cout << middle ;
break;
}
}
if (n < 1 || n>15)
cout << -1;
return 0;
}