线性代数(二)

矩阵

基本概念、

如何加减乘,结合律,分配律,不满足交换律,单位矩阵,转置

( A B ) ^T = B^T*A^T

可由定义证明

|A^T| = |A|

∣ k A ∣ = k^ n ∣ A ∣

∣ A B ∣ = ∣ A ∣ ∣ B ∣

若∣ A ∣ ≠ 0 则称A 为非奇异矩阵(非退化矩阵),否则称为奇异矩阵。

设A为n阶方阵,若有n阶方阵B 使得,A B = B A = E ,则称A 是可逆的。

矩阵的逆若存在则唯一

伴随矩阵, 注意把原先的代数余子式行 按 列排

 

A A ∗ = ∣ A ∣ E

A ( A ∗ /∣ A ∣ ) = E

( k A )^ − 1 = 1/ k A − 1

( A^ T ) ^− 1 = ( A ^− 1 ) T

( A B ) ^− 1 = B^ − 1 A ^− 1

直观理解矩阵分块的思想

矩阵的三种初等变换

互换矩阵的两行

以一个非零数乘以矩阵的某一行

把某一行各元素的k倍加到另一行对应元素上

由单位阵E 经过一次初等变换得到的矩阵称为初等矩阵,每个初等变换都对应一个初等矩阵(自行想象三种初等矩阵)

初等矩阵是可逆的,逆矩阵也是初等矩阵:

P ( i , j ) − 1 = P ( i , j )

P ( i ( c ) ) − 1 = P ( i ( 1 c ) )

P ( i , j ( k ) ) − 1 = P ( i , j ( − k ) )

对一个m ∗ n 矩阵A 作一次初等行变换就相当于在A的左边乘上相应的m ∗ m初等矩阵;对A 作一次初等列变换就相当于在A的右边乘上相应的n ∗ n初等矩阵。

如果矩阵B 可由矩阵A 经过一系列初等变换得到,则称矩阵A 与B 等价,记为A ≅ B.

等价关系具有反身性,对称性,传递性。

任意一个m ∗ n 的矩阵A 都与一个形式为: D = [ E r 0 0 0 ]的矩阵等价( 0 ≤ r ≤ m i n ( m , n ) ),这里D 称为矩阵A 的标准形。 具体操作方法是,迭代地将所在行列置为零。

如果对矩阵只做初等行变换,未必能化成标准形,但可以化成阶梯形矩阵(不能连续下两个台阶)。

n 阶方阵A 可逆的充分必要条件是A 的标准形为En .

n 阶方阵A 可逆的充分必要条件是A 能表示成一些初等矩阵的乘积。

可逆矩阵总可以经过一系列的初等行变换化成单位矩阵。

利用上述结论,求矩阵的逆。将矩阵变为单位矩阵的那些行变换,作用在单位阵上即为原矩阵的逆。

A 的一切非零子式的最高阶数称为矩阵A的秩,记为r ( A )

矩阵A 经过初等变换后不改变它的秩(即等价矩阵有相同的秩)。

设 D = [ E r 0 0 0 ]是矩阵A 的标准形,则r ( A ) = r。

因此,求矩阵的秩,可以将其化为标准形,看其中1的个数。

对角矩阵,准对角矩阵,上下三角矩阵,对称矩阵,反对称矩阵的概念。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

And ν

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值