平行六面体的体积

本文详细介绍了三维空间中向量的叉乘性质及其在计算平面区域Sb,c的面积和向量H上的投影时的应用。通过右手定则确定了方向向量uu,并利用向量的叉乘运算求解了由向量A、B、C定义的三棱锥的体积。内容涉及向量的叉乘、向量的模长以及向量在向量积上的投影计算。
摘要由CSDN通过智能技术生成

f
如图: S b , c = ∣ B × C ∣ S_{b,c}=|B\times C| Sb,c=B×C u u u H H H的方向向量 H = A × u H=A\times u H=A×u
有右手定则得 u u u B , C B,C B,C的方向向量 u = B × C ∣ B × C ∣ u=\frac{B\times C}{|B\times C|} u=B×CB×C
S = S b , c ∗ H = S b , c ∗ ( A × u ) = ∣ B × C ∣ ∗ A × B × C ∣ B × C ∣ = A × B × C S=S_{b,c}*H=S_{b,c}*(A\times u)=|B\times C|*A\times\frac{B\times C}{|B\times C|}=A\times B\times C S=Sb,cH=Sb,c(A×u)=B×CA×B×CB×C=A×B×C

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

倾海、

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值