如图:
S
b
,
c
=
∣
B
×
C
∣
S_{b,c}=|B\times C|
Sb,c=∣B×C∣设
u
u
u是
H
H
H的方向向量
H
=
A
×
u
H=A\times u
H=A×u
有右手定则得
u
u
u是
B
,
C
B,C
B,C的方向向量
u
=
B
×
C
∣
B
×
C
∣
u=\frac{B\times C}{|B\times C|}
u=∣B×C∣B×C
S
=
S
b
,
c
∗
H
=
S
b
,
c
∗
(
A
×
u
)
=
∣
B
×
C
∣
∗
A
×
B
×
C
∣
B
×
C
∣
=
A
×
B
×
C
S=S_{b,c}*H=S_{b,c}*(A\times u)=|B\times C|*A\times\frac{B\times C}{|B\times C|}=A\times B\times C
S=Sb,c∗H=Sb,c∗(A×u)=∣B×C∣∗A×∣B×C∣B×C=A×B×C
平行六面体的体积
最新推荐文章于 2024-07-17 09:02:13 发布
本文详细介绍了三维空间中向量的叉乘性质及其在计算平面区域Sb,c的面积和向量H上的投影时的应用。通过右手定则确定了方向向量uu,并利用向量的叉乘运算求解了由向量A、B、C定义的三棱锥的体积。内容涉及向量的叉乘、向量的模长以及向量在向量积上的投影计算。
摘要由CSDN通过智能技术生成