tf.train.exponential_decay(指数学习率衰减)

参考:

https://blog.csdn.net/u013061183/article/details/79334697

 

 

#!/usr/bin/env python3

# -*- coding: utf-8 -*- '''
 学习率较大容易搜索震荡(在最优值附近徘徊),学习率较小则收敛速度较慢,
 那么可以通过初始定义一个较大的学习率,通过设置decay_rate来缩小学习率,减少迭代次数。
 tf.train.exponential_decay就是用来实现这个功能。
'''
__author__ = 'Zhang Shuai'

import tensorflow as tf

import matplotlib.pyplot as plt

learning_rate = 0.1 # 学习速率

decay_rate = 0.96 # 衰减速率,即每一次学习都衰减为原来的0.96

global_steps = 1000 # 总学习次数

# 如果staircase为True,那么每decay_steps改变一次learning_rate,

# 改变为learning_rate*(decay_rate**decay_steps)

# 如果为False则,每一步都改变,为learning_rate*decay_rate

decay_steps = 100

global_ = tf.placeholder(dtype=tf.int32)

# 如果staircase=True,那么每decay_steps更新一次decay_rate,如果是False那么每一步都更新一次decay_rate。

c = tf.train.exponential_decay(learning_rate, global_, decay_steps, decay_rate, staircase=True)

d = tf.train.exponential_decay(learning_rate, global_, decay_steps, decay_rate, staircase=False)

T_C = []

F_D = []

with tf.Session() as sess:

for i in range(global_steps):

     T_c = sess.run(c, feed_dict={global_: i})

     T_C.append(T_c)

     F_d = sess.run(d, feed_dict={global_: i})

     F_D.append(F_d)

plt.figure(1)

l1, = plt.plot(range(global_steps), F_D, 'r-') # staircase=False

l2, = plt.plot(range(global_steps), T_C, 'b-') # staircase=True

plt.legend(handles=[l1, l2, ], labels=['staircase=False', 'staircase=True'], loc='best', )

plt.show()

结果如图:

这里写图片描述

---------------------
原文:https://blog.csdn.net/u013061183/article/details/79334697

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值