1 根据图像特点(大小,颜色通道)定义模型参数,进行初始化,通常采用对参数随机赋值的方法。
2 读取训练数据,包括每个数据样本和对应的标记好的输出,一般采取小批量随机读取的方式。
3 根据设定好的训练模型,(是否规范化)喂入数据进行计算(结合当前样本的输入及当前权重,偏置参数)得出一个输出。
4 根据定义好的损失函数求出当前样本的损失值。
5 根据学习率,代价函数,梯度下降法等策略去更新权重。
6 跳转到步骤2继续进行下一个样本。
1 根据图像特点(大小,颜色通道)定义模型参数,进行初始化,通常采用对参数随机赋值的方法。
2 读取训练数据,包括每个数据样本和对应的标记好的输出,一般采取小批量随机读取的方式。
3 根据设定好的训练模型,(是否规范化)喂入数据进行计算(结合当前样本的输入及当前权重,偏置参数)得出一个输出。
4 根据定义好的损失函数求出当前样本的损失值。
5 根据学习率,代价函数,梯度下降法等策略去更新权重。
6 跳转到步骤2继续进行下一个样本。