TensorFlow 之卷积神经网络一般过程


1 根据图像特点(大小,颜色通道)定义模型参数,进行初始化,通常采用对参数随机赋值的方法。

2 读取训练数据,包括每个数据样本和对应的标记好的输出,一般采取小批量随机读取的方式。

3 根据设定好的训练模型,(是否规范化)喂入数据进行计算(结合当前样本的输入及当前权重,偏置参数)得出一个输出。

4 根据定义好的损失函数求出当前样本的损失值。

5 根据学习率,代价函数,梯度下降法等策略去更新权重。

6 跳转到步骤2继续进行下一个样本。



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值