参考:鱼书——斋藤康毅
网络结构
主要包含卷积层、激活函数、池化层、Dropout、全连接层。
首先初始化。
隐藏层就是一个小型的BP神经网络,放的是全连接层。图像经过卷积层得到像素特征,并在前向传播的过程中获得权重加持后的图像。在多次卷积后,特征图大小会有所减少。具体计算方式按照卷积和池化的顺序计算:
C
o
n
v
h
=
1
+
H
+
2
⋅
p
a
d
−
f
i
l
t
e
r
h
s
t
r
i
d
e
(
C
o
n
v
w
同理
)
Conv_h = 1 + \frac{H + 2 \cdot pad - filter_h}{stride}\quad \quad(Conv_w同理)
Convh=1+strideH+2⋅pad−filterh(Convw同理)
P o o l O u t h = 1 + C o n v h − p o o l h s t r i d e PoolOut_h = 1 + \frac{Conv_h - pool_h}{stride} PoolOuth=1+strideConvh−poolh
按照代码所给参数,经过六个卷积和多个池化的输出特征图大小为:
Module | size, pad, stride | Feature Map Size |
---|---|---|
Conv | 3, 1, 1 | 28 |
Relu | – | 28 |
Conv | 3, 1, 1 | 28 |
Relu | – | 28 |
Pool | 2, --, 2 | 14 |
Conv | 3, 1, 1 | 14 |
Relu | – | 14 |
Conv | 3, 2, 1 | 16 |
Relu | – | 16 |
Pool | 2, --, 2 | 8 |
Conv | 3, 1, 1 | 8 |
Relu | – | 8 |
Conv | 3, 1, 1 | 8 |
Relu | – | 8 |
Pool | 2, --, 2 | 4 |
在卷积和池化过程中,通道数逐渐被修改为filter_num,也就是滤波器个数(包含卷积和池化)。
在最后池化结束后,进入到全连接层,输入数据为
64
⋅
P
o
o
l
O
u
t
h
⋅
P
o
o
l
O
u
t
w
64 \cdot PoolOut_h \cdot PoolOut_w
64⋅PoolOuth⋅PoolOutw.
在源代码中,有一个pre_node_nums = np.array([1*3*3, 16*3*3, 16*3*3, 32*3*3, 63*3*3, 64*4*4] + hidden_size_list
,全连接层的神经元个数取决于上一层个数,而卷积的神经元个数取决于通道数(或者filter_num) * feature_map_h* feature_map_w
。所以我认为,原作者在这里有点问题,应该写成1*28*28, 16*28*28, 16*28*28, 32*14*14, 32*16*16, 64*8*8, 64*4*4
.
接下来就是构建网络层,没有什么好讲的。需要注意的是第一个全连接层的输入为64*4*4
, 相当于有64个通道,4 * 4大小的图片。
最后就是权重更新之类的工作,训练写成了一个trainer类,就是斋藤老爷子的写法,代码放在最后。
网络代码:
# coding: utf-8
import sys, os
sys.path.append(os.pardir) # 为了导入父目录的文件而进行的设定
import pickle
import numpy as np
from collections import OrderedDict
from common.layers import *
class DeepConvNet:
def __init__(self, hidden_size_list=[200, 10, 50, 20], input_dim=(1, 28, 28),
conv_param_1={'filter_num': 16, 'filter_size': 3, 'pad': 1, 'stride': 1},
conv_param_2={'filter_num': 16, 'filter_size': 3, 'pad': 1, 'stride': 1},
conv_param_3={'filter_num': 32, 'filter_size': 3, 'pad': 1, 'stride': 1},
conv_param_4={'filter_num': 32, 'filter_size': 3, 'pad': 2, 'stride': 1},
conv_param_5={'filter_num': 64, 'filter_size': 3, 'pad': 1, 'stride': 1},
conv_param_6={'filter_num': 64, 'filter_size': 3, 'pad': 1, 'stride': 1},
output_size=10, dropout_ratio=0.5):
self.hidden_size_list = hidden_size_list
pre_node_nums = np.array([1*28*28, 16*28*28, 16*28*28, 32*14*14, 32*16*16, 64*8*8, 64*4*4] + hidden_size_list)
weight_init_scales = np.sqrt(2.0 / pre_node_nums)
# if weight_init_scales.lower() in ('relu', 'he'):
# weight_init_scales = np.sqrt(2.0 / pre_node_num)
# elif weight_init_scales.lower() in ('relu', 'he'):
# weight_init_scales = np.sqrt(1.0 / pre_node_num)
self.params = {}
pre_channel_num = input_dim[0]
for idx, conv_param in enumerate([conv_param_1, conv_param_2, conv_param_3, conv_param_4, conv_param_5, conv_param_6]):
self.params['W' + str(idx+1)] = weight_init_scales[idx] * np.random.randn(conv_param['filter_num'], pre_channel_num, conv_param['filter_size'], conv_param['filter_size'])
self.params['b' + str(idx+1)] = np.zeros(conv_param['filter_num'])
pre_channel_num = conv_param['filter_num'] # 要注意这个
self.params['W7'] = weight_init_scales[6] * np.random.randn(64*4*4, hidden_size_list[0])
self.params['b7'] = np.zeros(hidden_size_list[0])
self.params['W' + str(7 + len(hidden_size_list))] = weight_init_scales[len(weight_init_scales)-1] * np.random.randn(hidden_size_list[-1], output_size)
self.params['b' + str(7 + len(hidden_size_list))] = np.zeros(output_size)
index = 0
# for idx in range(7, 7+len(hidden_size_list)):
for idx in range(7, 7+len(hidden_size_list)-1):
self.params['W' + str(idx+1)] = weight_init_scales[idx] * np.random.randn(hidden_size_list[index], hidden_size_list[index+1])
self.params['b' + str(idx+1)] = np.zeros(hidden_size_list[index+1])
index = index + 1
self.layers = []
self.layers.append(Convolution(self.params['W1'], self.params['b1'],
conv_param_1['stride'], conv_param_1['pad'])) # 0
self.layers.append(Relu()) # 1
self.layers.append(Convolution(self.params['W2'], self.params['b2'],
conv_param_1['stride'], conv_param_1['pad'])) # 2
self.layers.append(Relu()) # 3
self.layers.append(Pooling(pool_h=2, pool_w=2, stride=2)) # 4
self.layers.append(Convolution(self.params['W3'], self.params['b3'],
conv_param_1['stride'], conv_param_1['pad'])) # 5
self.layers.append(Relu()) # 6
self.layers.append(Convolution(self.params['W4'], self.params['b4'],
conv_param_4['stride'], conv_param_4['pad'])) # 7
self.layers.append(Relu()) # 8
self.layers.append(Pooling(pool_h=2, pool_w=2, stride=2)) # 9
self.layers.append(Convolution(self.params['W5'], self.params['b5'],
conv_param_5['stride'], conv_param_5['pad'])) # 10
self.layers.append(Relu()) # 11
self.layers.append(Convolution(self.params['W6'], self.params['b6'],
conv_param_6['stride'], conv_param_6['pad'])) # 12
self.layers.append(Relu()) # 13
self.layers.append(Pooling(pool_h=2, pool_w=2, stride=2)) # 14
self.layers.append(Affine(self.params['W7'], self.params['b7'])) # 15
self.layers.append(Relu()) # 16
self.layers.append(Dropout(0.5)) # 17
# for idx in range(7, 7+len(hidden_size_list)):
for idx in range(7, 7+len(hidden_size_list)-1):
self.layers.append(Affine(self.params['W' + str(idx+1)], self.params['b' + str(idx+1)])) # 18 21 24
self.layers.append(Relu()) # 19 22 25
self.layers.append(Dropout(dropout_ratio)) # 20 23 26
self.layers.append(Affine(self.params['W' + str(7 + len(hidden_size_list))], self.params['b' + str(7 + len(hidden_size_list))])) # 27
self.layers.append(Dropout(dropout_ratio))
self.last_layer = SoftmaxWithLoss()
def predict(self, x, train_flg=False):
for layer in self.layers:
if isinstance(layer, Dropout):
x = layer.forward(x, train_flg)
else:
x = layer.forward(x)
return x
def loss(self, x, t):
y = self.predict(x, train_flg=True)
return self.last_layer.forward(y, t)
def accuracy(self, x, t, batch_size=100):
if t.ndim != 1 : t = np.argmax(t, axis=1)
acc = 0.0
for i in range(int(x.shape[0] / batch_size)):
tx = x[i*batch_size:(i+1)*batch_size]
tt = t[i*batch_size:(i+1)*batch_size]
y = self.predict(tx, train_flg=False)
y = np.argmax(y, axis=1)
acc += np.sum(y == tt)
return acc / x.shape[0]
def gradient(self, x, t):
self.loss(x, t)
dout = 1
dout = self.last_layer.backward(dout)
tmp_layers = self.layers.copy()
tmp_layers.reverse()
for layer in tmp_layers:
dout = layer.backward(dout)
grads = {}
for i, layer_idx in enumerate((0, 2, 5, 7, 10, 12, 15, 18, 21, 24, 27)):
grads['W' + str(i+1)] = self.layers[layer_idx].dW
grads['b' + str(i+1)] = self.layers[layer_idx].db
return grads
def save_params(self, file_name="params.pkl"):
params = {}
for key, val in self.params.items():
params[key] = val
with open(file_name, 'wb') as f:
pickle.dump(params, f)
def load_params(self, file_name="params.pkl"):
with open(file_name, 'rb') as f:
params = pickle.load(f)
for key, val in params.items():
self.params[key] = val
for i, layer_idx in enumerate((0, 2, 5, 7, 10, 12, 15, 18, 21, 24, 27)):
self.layers[layer_idx].W = self.params['W' + str(i+1)]
self.layers[layer_idx].b = self.params['b' + str(i+1)]
trainer代码:
# coding: utf-8
import sys, os
sys.path.append(os.pardir) # 为了导入父目录的文件而进行的设定
import numpy as np
from common.optimizer import *
class Trainer:
"""进行神经网络的训练的类
"""
def __init__(self, network, x_train, t_train, x_test, t_test,
epochs=20, mini_batch_size=100,
optimizer='SGD', optimizer_param={'lr':0.01},
evaluate_sample_num_per_epoch=None, verbose=True):
self.network = network
self.verbose = verbose
self.x_train = x_train
self.t_train = t_train
self.x_test = x_test
self.t_test = t_test
self.epochs = epochs
self.batch_size = mini_batch_size
self.evaluate_sample_num_per_epoch = evaluate_sample_num_per_epoch
# optimzer
optimizer_class_dict = {'sgd':SGD, 'momentum':Momentum, 'nesterov':Nesterov,
'adagrad':AdaGrad, 'rmsprpo':RMSprop, 'adam':Adam}
self.optimizer = optimizer_class_dict[optimizer.lower()](**optimizer_param)
self.train_size = x_train.shape[0]
self.iter_per_epoch = max(self.train_size / mini_batch_size, 1)
self.max_iter = int(epochs * self.iter_per_epoch)
self.current_iter = 0
self.current_epoch = 0
self.train_loss_list = []
self.train_acc_list = []
self.test_acc_list = []
def train_step(self):
batch_mask = np.random.choice(self.train_size, self.batch_size)
x_batch = self.x_train[batch_mask]
t_batch = self.t_train[batch_mask]
grads = self.network.gradient(x_batch, t_batch)
self.optimizer.update(self.network.params, grads)
loss = self.network.loss(x_batch, t_batch)
self.train_loss_list.append(loss)
if self.verbose: print("train loss:" + str(loss))
if self.current_iter % self.iter_per_epoch == 0:
self.current_epoch += 1
x_train_sample, t_train_sample = self.x_train, self.t_train
x_test_sample, t_test_sample = self.x_test, self.t_test
if not self.evaluate_sample_num_per_epoch is None:
t = self.evaluate_sample_num_per_epoch
x_train_sample, t_train_sample = self.x_train[:t], self.t_train[:t]
x_test_sample, t_test_sample = self.x_test[:t], self.t_test[:t]
train_acc = self.network.accuracy(x_train_sample, t_train_sample)
test_acc = self.network.accuracy(x_test_sample, t_test_sample)
self.train_acc_list.append(train_acc)
self.test_acc_list.append(test_acc)
if self.verbose: print("=== epoch:" + str(self.current_epoch) + ", train acc:" + str(train_acc) + ", test acc:" + str(test_acc) + " ===")
self.current_iter += 1
def train(self):
for i in range(self.max_iter):
self.train_step()
test_acc = self.network.accuracy(self.x_test, self.t_test)
if self.verbose:
print("=============== Final Test Accuracy ===============")
print("test acc:" + str(test_acc))
训练代码:
# coding: utf-8
import sys, os
sys.path.append(os.pardir) # 为了导入父目录的文件而进行的设定
import pickle
import numpy as np
from collections import OrderedDict
from common.layers import *
class DeepConvNet:
def __init__(self, hidden_size_list=[200, 10, 50, 20], input_dim=(1, 28, 28),
conv_param_1={'filter_num': 16, 'filter_size': 3, 'pad': 1, 'stride': 1},
conv_param_2={'filter_num': 16, 'filter_size': 3, 'pad': 1, 'stride': 1},
conv_param_3={'filter_num': 32, 'filter_size': 3, 'pad': 1, 'stride': 1},
conv_param_4={'filter_num': 32, 'filter_size': 3, 'pad': 2, 'stride': 1},
conv_param_5={'filter_num': 64, 'filter_size': 3, 'pad': 1, 'stride': 1},
conv_param_6={'filter_num': 64, 'filter_size': 3, 'pad': 1, 'stride': 1},
output_size=10, dropout_ratio=0.5):
self.hidden_size_list = hidden_size_list
pre_node_nums = np.array([1*28*28, 16*28*28, 16*28*28, 32*14*14, 32*16*16, 64*8*8, 64*4*4] + hidden_size_list)
weight_init_scales = np.sqrt(2.0 / pre_node_nums)
# if weight_init_scales.lower() in ('relu', 'he'):
# weight_init_scales = np.sqrt(2.0 / pre_node_num)
# elif weight_init_scales.lower() in ('relu', 'he'):
# weight_init_scales = np.sqrt(1.0 / pre_node_num)
self.params = {}
pre_channel_num = input_dim[0]
for idx, conv_param in enumerate([conv_param_1, conv_param_2, conv_param_3, conv_param_4, conv_param_5, conv_param_6]):
self.params['W' + str(idx+1)] = weight_init_scales[idx] * np.random.randn(conv_param['filter_num'], pre_channel_num, conv_param['filter_size'], conv_param['filter_size'])
self.params['b' + str(idx+1)] = np.zeros(conv_param['filter_num'])
pre_channel_num = conv_param['filter_num'] # 要注意这个
self.params['W7'] = weight_init_scales[6] * np.random.randn(64*4*4, hidden_size_list[0])
self.params['b7'] = np.zeros(hidden_size_list[0])
self.params['W' + str(7 + len(hidden_size_list))] = weight_init_scales[len(weight_init_scales)-1] * np.random.randn(hidden_size_list[-1], output_size)
self.params['b' + str(7 + len(hidden_size_list))] = np.zeros(output_size)
index = 0
# for idx in range(7, 7+len(hidden_size_list)):
for idx in range(7, 7+len(hidden_size_list)-1):
self.params['W' + str(idx+1)] = weight_init_scales[idx] * np.random.randn(hidden_size_list[index], hidden_size_list[index+1])
self.params['b' + str(idx+1)] = np.zeros(hidden_size_list[index+1])
index = index + 1
self.layers = []
self.layers.append(Convolution(self.params['W1'], self.params['b1'],
conv_param_1['stride'], conv_param_1['pad'])) # 0
self.layers.append(Relu()) # 1
self.layers.append(Convolution(self.params['W2'], self.params['b2'],
conv_param_1['stride'], conv_param_1['pad'])) # 2
self.layers.append(Relu()) # 3
self.layers.append(Pooling(pool_h=2, pool_w=2, stride=2)) # 4
self.layers.append(Convolution(self.params['W3'], self.params['b3'],
conv_param_1['stride'], conv_param_1['pad'])) # 5
self.layers.append(Relu()) # 6
self.layers.append(Convolution(self.params['W4'], self.params['b4'],
conv_param_4['stride'], conv_param_4['pad'])) # 7
self.layers.append(Relu()) # 8
self.layers.append(Pooling(pool_h=2, pool_w=2, stride=2)) # 9
self.layers.append(Convolution(self.params['W5'], self.params['b5'],
conv_param_5['stride'], conv_param_5['pad'])) # 10
self.layers.append(Relu()) # 11
self.layers.append(Convolution(self.params['W6'], self.params['b6'],
conv_param_6['stride'], conv_param_6['pad'])) # 12
self.layers.append(Relu()) # 13
self.layers.append(Pooling(pool_h=2, pool_w=2, stride=2)) # 14
self.layers.append(Affine(self.params['W7'], self.params['b7'])) # 15
self.layers.append(Relu()) # 16
self.layers.append(Dropout(0.5)) # 17
# for idx in range(7, 7+len(hidden_size_list)):
for idx in range(7, 7+len(hidden_size_list)-1):
self.layers.append(Affine(self.params['W' + str(idx+1)], self.params['b' + str(idx+1)])) # 18 21 24
self.layers.append(Relu()) # 19 22 25
self.layers.append(Dropout(dropout_ratio)) # 20 23 26
self.layers.append(Affine(self.params['W' + str(7 + len(hidden_size_list))], self.params['b' + str(7 + len(hidden_size_list))])) # 27
self.layers.append(Dropout(dropout_ratio))
self.last_layer = SoftmaxWithLoss()
def predict(self, x, train_flg=False):
for layer in self.layers:
if isinstance(layer, Dropout):
x = layer.forward(x, train_flg)
else:
x = layer.forward(x)
return x
def loss(self, x, t):
y = self.predict(x, train_flg=True)
return self.last_layer.forward(y, t)
def accuracy(self, x, t, batch_size=100):
if t.ndim != 1 : t = np.argmax(t, axis=1)
acc = 0.0
for i in range(int(x.shape[0] / batch_size)):
tx = x[i*batch_size:(i+1)*batch_size]
tt = t[i*batch_size:(i+1)*batch_size]
y = self.predict(tx, train_flg=False)
y = np.argmax(y, axis=1)
acc += np.sum(y == tt)
return acc / x.shape[0]
def gradient(self, x, t):
self.loss(x, t)
dout = 1
dout = self.last_layer.backward(dout)
tmp_layers = self.layers.copy()
tmp_layers.reverse()
for layer in tmp_layers:
dout = layer.backward(dout)
grads = {}
for i, layer_idx in enumerate((0, 2, 5, 7, 10, 12, 15, 18, 21, 24, 27)):
grads['W' + str(i+1)] = self.layers[layer_idx].dW
grads['b' + str(i+1)] = self.layers[layer_idx].db
return grads
def save_params(self, file_name="params.pkl"):
params = {}
for key, val in self.params.items():
params[key] = val
with open(file_name, 'wb') as f:
pickle.dump(params, f)
def load_params(self, file_name="params.pkl"):
with open(file_name, 'rb') as f:
params = pickle.load(f)
for key, val in params.items():
self.params[key] = val
for i, layer_idx in enumerate((0, 2, 5, 7, 10, 12, 15, 18, 21, 24, 27)):
self.layers[layer_idx].W = self.params['W' + str(i+1)]
self.layers[layer_idx].b = self.params['b' + str(i+1)]
load_params(self, file_name="params.pkl"):
with open(file_name, 'rb') as f:
params = pickle.load(f)
for key, val in params.items():
self.params[key] = val
for i, layer_idx in enumerate((0, 2, 5, 7, 10, 12, 15, 18, 21, 24, 27)):
self.layers[layer_idx].W = self.params['W' + str(i+1)]
self.layers[layer_idx].b = self.params['b' + str(i+1)]