题目:
输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。
总思路:
1.在先序序列中找第一个数值将中序序列划分为左右子树并依次递归。
2.当序列中只有一个数时创建节点并向上一级调用返回。
知识点(对于我):
1.重构二叉树是很熟悉的一个题目,但是原来只是手头上做过很多遍,在OJ上还是第一次,因此遇到一些问题。
2.掌握CodeBlocks下的基本调试技巧。
https://www.cnblogs.com/esCharacter/p/7927696.html
3. 0, null, nullptr的区别。
https://blog.csdn.net/fxbjye/article/details/77989569
4.代码的鲁棒性
必须考虑到多种错误处理,见代码
AC代码:
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* reConstructBinaryTree(vector<int> pre,vector<int> vin) {
if(pre.empty()||vin.empty())
return nullptr;
return reConstruct(pre, 0, pre.size()-1, vin, 0, vin.size()-1);
}
TreeNode* reConstruct
(
vector<int> pre, int preStart, int preEnd,
vector<int> vin, int vinStart, int vinEnd
){
int rootValue = pre[preStart];
TreeNode* root = new TreeNode(rootValue);
if(preStart==preEnd){//假如在先序序列中只有一个元素
if(vinStart==vinEnd && pre[preStart]==vin[vinStart])
//1.排除先序序列一个但中序还有多个数字的情况
//2.排除先序序列和中序序列相同位置数值不同的情况
return root;
else
throw "Invalid input";
}
//添加左右子树
//在中序序列中找到root的位置来进一步划分左右子树
int rootInVin = vinStart;
while(vin[rootInVin]!=rootValue && rootInVin<vinEnd)
rootInVin++;
if(rootInVin==vinEnd && vin[rootInVin]!=rootValue)//在中序序列中没有找到
throw "Invalid input";//排除先序序列根节点没法在中序序列中找到的情况
int leftLength = rootInVin - vinStart;
int leftPreEnd = preStart + leftLength;//先序序列中左子树的序列
if(leftLength>0)
root->left = reConstruct(pre, preStart + 1, leftPreEnd, vin, vinStart, rootInVin-1);
if(leftLength<preEnd-preStart)//假如还有右子树
root->right = reConstruct(pre, leftPreEnd+1, preEnd, vin, rootInVin+1, vinEnd);
return root;
}
};