莫比乌斯反演学习小结

先看大佬的PPT:点击打开链接


那么莫比乌斯反演主要解决什么问题呢?它主要解决的是对于一些函数f(n),如果我们很难直接求出它的值,而容易求出倍数和或约数和F(n),那么我们可以通过莫比乌斯反演来求得f(n)的值。

莫比乌斯反演实现代码:

mu[1]=1;
for(i=2;i<=n;i++)
{
	if(!not_prime[i])
	{
		prime[++tot]=i;
		mu[i]=-1;
	}
	for(j=1;prime[j]*i<=n;j++)
	{
		not_prime[prime[j]*i]=1;
		if(i%prime[j]==0)
		{
			mu[prime[j]*i]=0;
			break;
		}
		mu[prime[j]*i]=-mu[i];
	}
}
莫比乌斯反演有两种形式:






主要用的是第二种形式。

接下来举一道例题:

2301: [HAOI2011]Problem b

Time Limit: 50 Sec  Memory Limit: 256 MB
Submit: 6276  Solved: 2876
[ Submit][ Status][ Discuss]

Description

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。



Input

第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k

 

Output

共n行,每行一个整数表示满足要求的数对(x,y)的个数

 

Sample Input

2

2 5 1 5 1

1 5 1 5 2



Sample Output


14

3



HINT



100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000

思路:



代码实现(by hzwer):

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<set>
#include<ctime>
#include<vector>
#include<cmath>
#include<algorithm>
#include<map>
#define ll long long 
using namespace std;
inline int read()
{
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
int tot;
int a,b,c,d,k;
int sum[50005],mu[50005],pri[50005];
bool mark[50005];
void getmu()
{
	mu[1]=1;
	for(int i=2;i<=50000;i++)
	{
		if(!mark[i]){mu[i]=-1;pri[++tot]=i;}
		for(int j=1;j<=tot&&i*pri[j]<=50000;j++)
		{
			mark[i*pri[j]]=1;
			if(i%pri[j]==0){mu[i*pri[j]]=0;break;}
			else mu[i*pri[j]]=-mu[i];
		}
	}
	for(int i=1;i<=50000;i++)
		sum[i]=sum[i-1]+mu[i];
}
int cal(int n,int m)
{
    if(n>m)swap(n,m);
    int ans=0,pos;
    for(int i=1;i<=n;i=pos+1)
    {
        pos=min(n/(n/i),m/(m/i));
        ans+=(sum[pos]-sum[i-1])*(n/i)*(m/i);
    }
    return ans;
}
int main()
{
	getmu();
	int T=read();
	while(T--)
	{
	    a=read();b=read();c=read();d=read();k=read();
		a--;c--;
		a/=k;b/=k;c/=k;d/=k;
		int ans=cal(a,c)+cal(b,d)-cal(a,d)-cal(b,c);
		printf("%d\n",ans);
	}
	return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值