题意:S[n] 表示 集合{1,2,3,4,5.......n} 不存在连续元素的子集个数
Prime S 表示S[n]与之前的所有S[i]互质;
问 找到大于第K个PrimeS 能整除X 的第一个S[n],并且输出(S[n]/X)%M
性质:1.gcd(fib(n),fib(m))=fib(gcd(n,m))
2.(a/b)%c=(a%(b*c))/b
思路:容易发现S[n]是斐波那契数列,由性质1可知,除了斐波那契数列第四项外,第K项(k是质数)则其所对应的值也是质数也是题目所要求的Prime S。
Prime S数列为下 fib(3) fib(4) fib(5) fib(7) fib(9) fib(11) fib(13) fib(17)....
如何寻找整除X的数从 fib(Prime[k])开始一个一个找 使得fib(Prime[k])%X==0 的数即可
#include<cstdio>
using namespace std;
struct matrax
{
int m[2][2];
};
matrax A={
1,1,
1,0
};
int T,x,M,m,k,prime[2000010],tot=0;
bool flag[20101010];
void is_prime(int n)
{
for(int i=2;i<=n;i++)
{
if(!flag[i]) prime[++tot]=i;
for(int j=1;j<=tot;j++)
{
if(1ll*i*prime[j]>n) break;
flag[prime[j]*i]=1;
if(i%prime[j]==0) break;
}
}
}
matrax E;
void init()
{
for(int i=0;i<2;i++)
for(int j=0;j<2;j++)
E.m[i][j]=(i==j);
}
matrax multi(matrax a,matrax b)
{
matrax c;
for(int i=0;i<2;i++){
for(int j=0;j<2;j++){
c.m[i][j]=0;
for(int k=0;k<2;k++)
c.m[i][j]+=1ll*a.m[i][k]*b.m[k][j]%M;
c.m[i][j]%=M;
}
}
return c;
}
matrax power(matrax A,int k)
{
matrax ans=E,p=A;
while(k){
if(k&1) ans=multi(ans,p);
k>>=1;p=multi(p,p);
}
return ans;
}
int main()
{
is_prime(2e7);prime[1]=3;prime[2]=4;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&k,&x,&m);
M=x*m;
int an;
for(int i=prime[k];;i++)
{
init();
matrax ans=power(A,i-2);
an=(ans.m[0][0]+ans.m[1][0])%M;
if(an%x==0) break;
}
printf("%d\n",an/x);
}
}