鲲鹏服务器+昇腾卡(Atlas 300I pro)搭建DeepSeek-R1-Distill-Qwen-7B

1、服务器硬件配置

当前服务器配置为:2 * 鲲鹏920 + 2 * Atlas 300I pro

系统:open Euler 22.03-LTS (AArch64)

驱动版本:Ascend-hdk-310p-npu-driver_24.1.rc3_linux-aarch64.run

固件版本:Ascend-hdk-310p-npu-firmware_7.5.0.1.129.run

注:记得先安装昇腾卡的驱动和固件

2、部署

镜像准备:1.0.0-300I-Duo-py311-openeuler24.03-lts
完成加载镜像后,请使用docker images命令确认查找具体镜像名称与标签。

docker load -i mindie:1.0.0-300I-Duo-py311-openeuler24.03-lts

    注:因为昇腾Atlas 300I Pro和Atlas 300 Duo都是310B芯片,我就直接用这个镜像了,现在昇腾官网已经下载不了该镜像了,下载地址如下:
    mindie:1.0.0-300I-Duo-py311-openeuler24.03-lts以及其他mindie镜像下载列表【昇腾社区】

    (1)新建容器

    docker run -it -d --net=host --shm-size=1g \
        --name deepseek-7b \
        --device=/dev/davinci_manager \
        --device=/dev/hisi_hdc \
        --device=/dev/devmm_svm \
        --device=/dev/davinci0 \
        --device=/dev/davinci1 \
        --device=/dev/davinci2 \
        --device=/dev/davinci3 \
        --device=/dev/davinci4 \
        --device=/dev/davinci5 \
        --device=/dev/davinci6 \
        --device=/dev/davinci7 \
        -v /usr/local/Ascend/driver:/usr/local/Ascend/driver:ro \
        -v /usr/local/sbin:/usr/local/sbin:ro \
        -v /root/:/root/ \
        mindie:1.0.0-300I-Duo-py311-openeuler24.03-lts bash
    

      注:name 参数后是名称,device=/dev/davinci0,这是指你的第一张卡,剩下就是驱动和命令文件等等。

      (2)进入容器

      docker exec -it deepseek-7b bash
      

        (3)下载模型DeepSeek-R1-Distill-Qwen-7B

        请先通过如下命令安装ModelScope

        pip install modelscope
        

          下载完整模型repo

          modelscope download --model deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
          

            或者你自己下载再放进系统里

            魔塔社区下载蛮快的

            (4)修改模型路径下的config.json文件

            修改模型权重config.json中torch_dtype字段为float16

            (5)服务化推理

            打开配置文件

            vim /usr/local/Ascend/mindie/latest/mindie-service/conf/config.json
            

              修改配置文件

              修改的参数为:

              npuDeviceIds:我是两张卡所以[0,1]

              truncation:false

              modelName:你的模型名称,随便取

              modelWeightPath:模型的路径

              worldSize:2

              httpsEnabled" : false

              启动服务

              cd /usr/local/Ascend/mindie/latest/mindie-service/bin
              
                ./mindieservice_daemon
                

                  (6)新建窗口测试

                  curl 127.0.0.1:1040/generate -d '{
                  "prompt": "What is deep learning?",
                  "max_tokens": 32,
                  "stream": false,
                  "do_sample":true,
                  "repetition_penalty": 1.00,
                  "temperature": 0.01,
                  "top_p": 0.001,
                  "top_k": 1,
                  "model": "qwen"
                  }'
                  

                    注:默认是1025端口,可以在/usr/local/Ascend/mindie/latest/mindie-service/conf/config.json这个文件找到,IP配置也是。

                    答非所问,调整回答相关参数我不熟

                    DeepSeek-R1-Distill-Qwen-7B,QWen是比较擅长中文,所以

                    curl 127.0.0.1:1025/generate -d '{
                      "prompt": "深度学习是什么?",
                      "maxtokens": 150,
                      "stream": false,
                      "dosample": true,
                      "repetitionpenalty": 1.5,
                      "temperature": 0.7,
                      "topp": 0.95,
                      "topk": 100,
                      "model": "qwen"
                    }'
                    

                      2025年2月13日11:18:48,目前我这个参数问就稍微正常点- -

                      注意

                      1.回复会乱回复,字数限制

                      解决方法:maxIterTimes:5210

                      转自:鲲鹏服务器+昇腾卡(Atlas 300I pro)搭建DeepSeek-R1-Distill-Qwen-7B(自己存档详细版)_atlas 300i duo deepseek-CSDN博客

                      ### 鲲鹏服务器与昇腾AI加速的兼容性及使用方案 #### 兼容性分析 鲲鹏服务器基于华为自主研发的鲲鹏处理器设计,能够提供强大的通用计算能力。昇腾AI加速则专注于人工智能领域的训练和推理任务,二者通过软硬件协同优化可以实现高效的AI处理能力[^3]。 具体来说,昇腾AI加速可以通过PCIe Gen4 x16接口连接至鲲鹏服务器,并以EP(Endpoint)模式运行作为协处理器。这种架构允许多张昇腾AI加速并行扩展,从而满足分布式推理任务的需求[^2]。此外,鲲鹏服务器的操作系统经过适配后,能够支持昇腾AI加速所需的驱动程序和开发环境,进一步增强了两者的兼容性和稳定性。 #### 使用方案概述 为了充分发挥鲲鹏服务器与昇腾AI加速的能力,建议采用以下技术路径: 1. **软件栈搭建** - 安装适合鲲鹏平台的操作系统版本,例如欧拉OS或其他经认证的支持鲲鹏架构的Linux发行版。 - 调用昇腾AI云服务器所支持的Python接口或MindStudio图形化工具完成模型部署与管理操作[^1]。 2. **框架支持** - 利用TensorFlow、Caffe、MindSpore等主流深度学习框架进行算法开发。这些框架均已被优化以便更好地适应昇腾处理器特性。 3. **网络通信优化** - 结合25Gbps高性能智能网以及8×100Gbps RDMA网络构建大规模训练集群,提升数据传输效率和支持更复杂的AI应用场景需求。 4. **编程实践示例** 以下是利用MindSpore框架在配备昇腾AI加速鲲鹏服务器上执行简单神经网络训练的一个代码片段: ```python import numpy as np from mindspore import context, nn, Tensor from mindspore.nn import TrainOneStepCell, WithLossCell context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.dense = nn.Dense(in_channels=16, out_channels=10) def construct(self, x): return self.dense(x) network = Net() loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') optimizer = nn.Momentum(network.trainable_params(), learning_rate=0.01, momentum=0.9) net_with_loss = WithLossCell(network, loss_fn) train_network = TrainOneStepCell(net_with_loss, optimizer) input_data = Tensor(np.random.randn(32, 16).astype(np.float32)) label = Tensor(np.random.randint(0, 10, (32)).astype(np.int32)) for _ in range(10): # 进行十次迭代更新参数 train_network(input_data, label) ``` 上述脚本展示了如何定义一个简单的全连接层并通过梯度下降法对其进行训练的过程。其中`device_target="Ascend"`指定了目标设备为昇腾系列芯片。 #### 维护与发展策略 随着华为持续投入资源完善其围绕鲲鹏与昇腾处理器建立起来的产品生态系统,未来可能会推出更多针对特定行业定制化的解决方案和服务包来简化用户的实施流程并降低总体拥有成本(TCO)[^3]。
                      评论
                      添加红包

                      请填写红包祝福语或标题

                      红包个数最小为10个

                      红包金额最低5元

                      当前余额3.43前往充值 >
                      需支付:10.00
                      成就一亿技术人!
                      领取后你会自动成为博主和红包主的粉丝 规则
                      hope_wisdom
                      发出的红包
                      实付
                      使用余额支付
                      点击重新获取
                      扫码支付
                      钱包余额 0

                      抵扣说明:

                      1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
                      2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

                      余额充值