数据流中的中位数

【题目描述】
如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。我们使用Insert()方法读取数据流,使用GetMedian()方法获取当前读取数据的中位数。

【思路】
使用大小堆,用优先队列来保存大小两个部分数据

【代码】

class Solution {
public:
    void Insert(int num)
    {
        if(small.size() == big.size())
        {
            big.push(num);
            small.push(big.top());
            big.pop();
        }
        else 
        {
            small.push(num);
            big.push(small.top());
            small.pop();
        }
        
    }

    double GetMedian()
    { 
        if(small.empty()) return 0;
        if(small.size() == big.size())
        {
            return (double)(small.top()+big.top())/2;
        }
        else return small.top();
    }
private:
    priority_queue<int>small;//大顶堆
    priority_queue<int,vector<int>,greater<int> > big;//小顶堆
};
内容概要:本文档主要介绍了Intel Edge Peak (EP) 解决方案,涵盖从零到边缘高峰的软件配置和服务管理。EP解决方案旨在简化客户的入门门槛,提供一系列工具和服务,包括Edge Software Provisioner (ESP),用于构建和缓存操作系统镜像和软件栈;Device Management System (DMS),用于远程集群或本地集群管理;以及Autonomous Clustering for the Edge (ACE),用于自动化边缘集群的创建和管理。文档详细描述了从软件发布、设备制造、运输、安装到最终设备激活的全过程,并强调了在不同应用场景(如公共设施、工业厂房、海上油井和移动医院)下的具体部署步骤和技术细节。此外,文档还探讨了安全设备注册(FDO)、集群管理、密钥轮换和备份等关键操作。 适合人群:具备一定IT基础设施和边缘计算基础知识的技术人员,特别是负责边缘设备部署和管理的系统集成商和运维人员。 使用场景及目标:①帮助系统集成商和客户简化边缘设备的初始配置和后续管理;②确保设备在不同网络环境下的安全启动和注册;③支持大规模边缘设备的自动化集群管理和应用程序编排;④提供详细的密钥管理和集群维护指南,确保系统的长期稳定运行。 其他说明:本文档是详细描述了Edge Peak技术及其应用案例。文档不仅提供了技术实现的指导,还涵盖了策略配置、安全性和扩展性的考虑,帮助用户全面理解和实施Intel的边缘计算解决方案。
计算数据流中位数可以通过Flink的ProcessFunction来实现。 具体实现步骤如下: 1. 将数据流按照大小排序 2. 计算数据流的长度,如果是奇数,则中位数为第 (length+1)/2 个元素;如果是偶数,则中位数为第length/2个元素和第(length/2+1)个元素的平均值。 3. 在ProcessFunction的实现中,可以使用状态变量来保存数据流的有序列表,并计算中位数。 以下是一个简单的示例代码: ```java public class MedianFunction extends ProcessFunction<Integer, Double> { private ListState<Integer> values; @Override public void open(Configuration parameters) throws Exception { super.open(parameters); values = getRuntimeContext().getListState(new ListStateDescriptor<Integer>("values", Integer.class)); } @Override public void processElement(Integer value, Context ctx, Collector<Double> out) throws Exception { values.add(value); List<Integer> sortedValues = new ArrayList<>(); for (Integer v : values.get()) { sortedValues.add(v); } Collections.sort(sortedValues); int length = sortedValues.size(); if (length % 2 == 0) { double median = (sortedValues.get(length/2) + sortedValues.get(length/2 - 1)) / 2.0; out.collect(median); } else { double median = sortedValues.get(length/2); out.collect(median); } } } ``` 在上述代码中,我们使用了ListState来保存数据流中的元素,并在每次处理新元素时重新排序并计算中位数。注意,这只是一个简单的示例,实际应用中需要考虑更多的问题,比如数据倾斜、数据丢失等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值