偶数 个人站成一个圆,总人数为 num_people 。每个人与除自己外的一个人握手,所以总共会有 num_people / 2 次握手。
将握手的人之间连线,请你返回连线不会相交的握手方案数。
由于结果可能会很大,请你返回答案 模 10^9+7 后的结果。
示例 1:
输入:num_people = 2
输出:1
示例 2:
输入:num_people = 4
输出:2
解释:总共有两种方案,第一种方案是 [(1,2),(3,4)] ,第二种方案是 [(2,3),(4,1)] 。
示例 3:
输入:num_people = 6
输出:5
示例 4:
输入:num_people = 8
输出:14
提示:
2 <= num_people <= 1000
num_people % 2 == 0
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/handshakes-that-dont-cross
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
第一种思路:
递归。
当第一个人和第 i 个人握手了之后,剩下的人被分割成了两个部分:
1. i - 2, 即前 i 个人去掉 第一个人和 第 i 个人。
2. num_people - i, 总人数去掉前 i 个人。
现在这两部分是和原问题种类相同,但规模更小的问题,因此可以采用递归求解。
递归的问题在于,重复计算非常多,因此效率很低,当输入等于24的时候就会超时。
class Solution(object):
def numberOfWays(self, num_people):
"""
:type num_people: int
:rtype: int
"""
if not num_people:
return 1
res = 0
for i in range(2, num_people + 1):
res += self.numberOfWays(i - 2) * self.numberOfWays(num_people - i)
return res % (10 ** 9 + 7)
第二种思路:
观察一下前四项可以发现, 1, 2, 5, 14,
这不就是熟悉的卡特兰数吗:
1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, ... (sequence A000108 in the OEIS)。
所以直接套公式:
时间复杂度: O((2n)!),不过因为factorial是用c实现的,所以飞快……
空间复杂度:O(1)
from math import factorial as fac
class Solution(object):
def numberOfWays(self, num_people):
"""
:type num_people: int
:rtype: int
"""
def catalan(n):
return fac(2*n) // (fac(n+1) * fac(n))
return catalan(num_people // 2) % ( 10 ** 9 + 7)
第三种思路:
递归行不通,那就上DP。
用dp[i] 代表输入为 i 时的解,
根据之前的分析, dp[i] = sum(dp[j - 2] * dp[i - j] for j in range(2, i + 1, 2))
时间复杂度:O(N ^ 2)
空间复杂度:O(N)
class Solution(object):
def numberOfWays(self, num_people):
"""
:type num_people: int
:rtype: int
"""
dp = [0 for _ in range(num_people + 1)]
dp[0] = 1
for i in range(1, num_people + 1):
for j in range(2, i + 1, 2):
dp[i] += (dp[j - 2] * dp[i - j]) % (10 ** 9 + 7)
return dp[num_people] % (10 ** 9 + 7)