Leetcode-Python-1259. 不相交的握手(递归 + 数学(卡特兰数)+ DP)

偶数 个人站成一个圆,总人数为 num_people 。每个人与除自己外的一个人握手,所以总共会有 num_people / 2 次握手。

将握手的人之间连线,请你返回连线不会相交的握手方案数。

由于结果可能会很大,请你返回答案 模 10^9+7 后的结果。

 

示例 1:

输入:num_people = 2
输出:1
示例 2:

输入:num_people = 4
输出:2
解释:总共有两种方案,第一种方案是 [(1,2),(3,4)] ,第二种方案是 [(2,3),(4,1)] 。
示例 3:

输入:num_people = 6
输出:5
示例 4:

输入:num_people = 8
输出:14
 

提示:

2 <= num_people <= 1000
num_people % 2 == 0

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/handshakes-that-dont-cross
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

第一种思路:

递归。

当第一个人和第 i 个人握手了之后,剩下的人被分割成了两个部分:

1. i - 2, 即前 i 个人去掉 第一个人和 第 i 个人。

2. num_people - i, 总人数去掉前 i 个人。

现在这两部分是和原问题种类相同,但规模更小的问题,因此可以采用递归求解。

 递归的问题在于,重复计算非常多,因此效率很低,当输入等于24的时候就会超时。

class Solution(object):
    def numberOfWays(self, num_people):
        """
        :type num_people: int
        :rtype: int
        """
        if not num_people:
            return 1
        res = 0
        for i in range(2, num_people + 1):
            res += self.numberOfWays(i - 2) * self.numberOfWays(num_people - i)
        return res % (10 ** 9 + 7)

第二种思路:

观察一下前四项可以发现, 1, 2, 5, 14, 

这不就是熟悉的卡特兰数吗:

1, 1, 251442132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, ... (sequence A000108 in the OEIS)。

所以直接套公式:

时间复杂度: O((2n)!),不过因为factorial是用c实现的,所以飞快……

空间复杂度:O(1)

from math import factorial as fac
class Solution(object):
    def numberOfWays(self, num_people):
        """
        :type num_people: int
        :rtype: int
        """
        def catalan(n):
            return fac(2*n) // (fac(n+1) * fac(n))
        return catalan(num_people // 2) % ( 10 ** 9 + 7)

第三种思路:

递归行不通,那就上DP。

用dp[i] 代表输入为 i 时的解,

根据之前的分析, dp[i] = sum(dp[j - 2] * dp[i - j] for j in range(2, i + 1, 2))

时间复杂度:O(N ^ 2)

空间复杂度:O(N)

class Solution(object):
    def numberOfWays(self, num_people):
        """
        :type num_people: int
        :rtype: int
        """
        dp = [0 for _ in range(num_people + 1)]
        dp[0] = 1
        for i in range(1, num_people + 1):
            for j in range(2, i + 1, 2):
                dp[i] += (dp[j - 2] * dp[i - j]) % (10 ** 9 + 7)
        
        return dp[num_people] % (10 ** 9 + 7)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值