映射笔记总结

映射

  两个非空集合AB之间存在着对应关系f,而且对于A中的每一个元素a,在B中总有唯一的元素b与它对应。这种对应关系称为从AB映射,记作 f : A ⟶ B f : A \longrightarrow B f:AB。其中,b称为元素a在映射f下的,记作 b = f ( a ) b = f(a) b=f(a)a称为b关于映射f原像
  设f是由集合A到集合B的映射,如果任意的 x 1 ,    x 2 ∈ A x_1, \; x_2 \in A x1,x2A x 1 ≠ x 2 x_1 \neq x_2 x1=x2,都有 f ( x 1 ) ≠ f ( x 2 ) f(x_1) \neq f(x_2) f(x1)=f(x2),则称f为由AB单射
  设f是由集合A到集合B的映射,如果集合B中的任意一个元素y都是集合A中的像,则称fAB满射
  若映射f既是单射,又是满射,则称f一一映射双射

逆映射

  设 f : A ⟶ B f : A \longrightarrow B f:AB是集合A到集合B上的一一映射,如果对于B中每一个元素b,使bA中的原像a和它对应,这样得到的映射称为 f : A ⟶ B f : A \longrightarrow B f:AB逆映射,记作 f − 1 : B ⟶ A f^{-1} : B \longrightarrow A f1:BA

线性映射

  当映射 f f f满足以下两个条件时,就可以说映射 f f f是从 X X X Y Y Y线性映射

  1. f ( x i ) + f ( x j ) = f ( x i + x j ) f(x_i) + f(x_j) = f(x_i + x_j) f(xi)+f(xj)=f(xi+xj)
  2. c f ( x i ) = f ( c x i ) cf(x_i) = f(cx_i) cf(xi)=f(cxi)

复合映射

  设有2个映射 g : X ⟶ Y 1 g : X \longrightarrow Y_1 g:XY1 f : Y 2 ⟶ Z f : Y_2 \longrightarrow Z f:Y2Z,其中 Y 1 ⊂ Y 2 Y_1 \subset Y_2 Y1Y2,则由映射gf可以定出一个从XZ的对应法则,它将每个 x ∈ X x \in X xX映成 f [ g ( x ) ] ∈ Z f[g(x)] \in Z f[g(x)]Z。显然,这个对应法则确定了一个从XZ的映射,这个映射称为映射gf构成的复合映射,记作 f ∘ g f \circ g fg
  映射fg构成复合映射的条件是:g的值域必须包含在f的定义域内,否则不能构成复合映射。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值