第六章 组合数据类型
方法论
-Python三种主流组合数据类型的使用方法
实践能力
-学会编写处理一组数据的程序
6.1 集合类型及操作
1、集合类型定义
集合是多个元素的无序组合
-集合类型与数学中的集合概念一致
-集合元素之间无序,每个元素唯一,不存在相同元素
-集合元素不可更改,不能是可变数据类型
-集合用{}表示,元素间用逗号分隔
-建立集合类型用{}或set()
-建立空集合类型,必须使用set()
例如:
A={“python”, 123, (“python”, 123)} #使用{}建立集合
{123, “python”, (“python”, 123)}
B=set(“pypy123”)
{“1”, “p”, “2”, “3”, “y”} #使用set()建立集合
C={“python”, 123, “python”, 123}
{123, “python”}
2、集合操作符
6个操作符
4个增强操作符
例如:
A = {“p”, “y”, 123}
B = set(“pypy123”)
A-B为{123}
B-A为{“1”, “2”, “3”}
A&B为{“p”, “y”}
A|B为{“1”, “2”, “3”, “p”, “y”, 123}
A^B为{“1”, “2”, “3”, 123}
3、集合处理方法
实例:
A = {"p", "y", 123}
for item in A:
print(item, end="")
p123y
>>> A
{"p", 123, "y"}
try:
while True:
print(A.pop(), end="")
except:
pass
p123y
>>> A
set()
4、集合类型应用场景
包含关系比较
>>> "p" in {"p", "y", 123}
True
>>> {"p", "y"} >= {"p", "y", 123}
False
数据去重:集合类型所有元素无重复
>>> ls = ["p", "p", "y", "y", 123}
>>> s = set(ls) #利用了集合无重复元素的特点
{"p", "y", 123}
>>> lt = list(s) #将集合转换为列表
["p", "y", 123]
6.2 序列类型及操作
1、序列类型定义
序列是具有先后关系的一组元素
-序列是一维元素向量,元素类型可以不同
-类似数学元素序列:S0,S1,…,Sn-1
-元素间由序号引导,通过下标访问序列的特定元素
序列是一个基类类型
序列类型:字符串类型、元组类型、列表类型
2、序列处理函数及方法
6个操作符
序列类型操作实例
>>> ls = ["python", 123, ".io"]
>>> ls[::-1]
['.io', 123, 'python']
>>> s = "python123.io"
>>> s[::-1]
'oi.321nohtyp'
5个函数和方法
>>> ls = ["python", 123, ".io"]
>>> len(ls)
3
>>> s = "python123.io"
>>> max(s) #按照字母序比较
'y'
3、元组类型及操作
元组是序列类型的一种扩展
-元组是一种序列类型,一旦创建就不能被修改
-使用小括号 () 或tuple () 创建,元素间用逗号,分隔
-可以使用或不使用小括号
def func():
return 1, 2 (计算机中默认返回一个元组)
>>> creature = "cat", "dog", "tiger", "human"
>>> creature
("cat", "dog", "tiger", "human")
>>> color = (0x001100, "blue", creature)
>>> color
(0x001100, "blue", ("cat", "dog", "tiger", "human"))
元组继承序列类型的全部通用操作
-元组继承了序列类型的全部通用操作
-元组因为创建后不能修改,因此没有特殊操作
-使用或不使用小括号
>>> creature = "cat", "dog", "tiger", "human"
>>> creature[::-1] #不改变原有creature元组值,而是生成一个新的元组
("human", "tiger", "dog", "cat")
>>> color = (0x001100, "blue", creature)
>>> color[-1][2]
"tiger"
4、列表类型及操作
列表是序列类型的一种扩展,十分常用
-列表是一种序列类型,创建后可以随意被修改
-使用方括号 [] 或list() 创建,元素间用逗号,分隔
-列表中各元素类型可以不同,无长度限制
>>> ls = ["cat", "dog", "tiger", 1024]
>>> ls
["cat", "dog", "tiger", 1024]
>>> lt = ls
>>> lt
["cat", "dog", "tiger", 1024]
方括号 [] 或list() 真正创建一个列表,赋值仅传递引用
>>> ls = ["cat", "dog", "tiger", 1024]
>>> ls[1:2] = [1, 2, 3, 4]
["cat", 1, 2, 3, 4, "tiger", 1024]
>>> del ls[::3]
[1, 2, 4, "tiger"]
>>> ls*2
[1, 2, 4, "tiger", 1, 2, 4, "tiger"]
>>> ls = ["cat", "dog", "tiger", 1024]
>>> ls.append(1234)
["cat", "dog", "tiger", 1024, 1234]
>>> ls.insert(3, "human")
["cat", "dog", "tiger", "human", 1024, 1234]
>>> ls.reverse()
[1234, 1024, "human", "tiger", "dog", "cat"]
5、序列类型典型应用场景
序列类型应用场景
-元组用于元素不改变的应用场景,更多用于固定搭配场景(如return)
-列表更加灵活。它是最常用的序列类型
-最主要作用:表示一组有序数据,进而操作他们
元素遍历
for item in ls :
<语句块>
for item in tp :
<语句块>
数据保护
-如果不希望数据被程序所改变,转换成元组类型
>>> ls = ["cat", "dog", "tiger", 1024]
>>> lt = tuple(ls
>>> lt
("cat", "dog", "tiger", 1024)
6.3 实例9:基本统计值计算
1、问题分析
基本统计值
-需求:给出一组数,对它们有个概要理解
-该怎么做?如:总个数、求和、平均值、方差、中位数…
-总个数:len()
-求和:for…in
-平均值:求和/总个数
-方差:各数据与平均数差的平方的和的平均数
-中位数:排序,然后奇数找中间1个,偶数找中间2个取平均
2、实例讲解
#CalStatisticsV1.py
def getNum(): #获取用户不定长度的输入
nums = []
iNumStr = input("请输入数字(回车退出):")
while iNumStr != "":
nums.append(eval(iNumStr))
iNumStr = input("请输入数字(回车退出):")
return nums
def mean(numbers): #计算平均值
s = 0.0
for num in numbers:
s = s + num
return s / len(numbers)
def dev(numbers, mean): #计算方差
sdev = 0.0
for num in numbers:
sdev = sdev + (num - mean)**2
return pow(sdev / (len(numbers)-1), 0.5)
def median(numbers): #计算中位数
sorted(numbers)
size = len(numbers)
if size % 2 == 0:
med = (numbers[size//2-1] + numbers[size//2])/2
else:
med = numbers[size//2]
return med
n = getNum()
m = mean(n)
print("平均值:{}, 方差:{:.2}, 中位数:{}.".format(m, dev(n, m), median(n)))
3、举一反三
技术能力扩展
-获取多个数据:从控制台获取多个不确定数据的方法
-分隔多个函数:模块化设计方法
-充分利用函数:充分利用Python提供的内容函数
6.4 字典类型及操作
1、字典类型定义
理解“映射”
-映射是一种键(索引)和值(数据)的对应
如:“city” : “北京市”
序列类型由0…N整数作为数据的默认索引
映射类型则由用户为数据定义索引
字典类型是“映射”的体现
-键值对:键是数据索引的扩展
-字典是键值对的集合,键值对之间无序
-采用大括号{}和dict()函数创建,键值对用冒号:表示
{<键1>:<值1>, <键2>:<值2>, …,<键n>:<值n>}
在字典变量中,通过键获得值
<字典变量> = {<键1>:<值1>, <键2>:<值2>, …,<键n>:<值n>}
<值> = <字典变量>[<键>]
<字典变量>[<键>] = <值>
[ ]用来向字典变量中索引或增加元素
>>> d = {"中国": "北京", "美国": "华盛顿", "法国": "巴黎"}
>>> d
{"中国": "北京", "美国": "华盛顿", "法国": "巴黎"}
>>> d["中国"]
"北京"
>>> de = {}; type(de)
<class 'dict'>
type(x) : 返回变量x的类型
2、字典处理函数及方法
>>> d = {"中国": "北京", "美国": "华盛顿", "法国": "巴黎"}
>>> "中国" in d
True
>>> d.keys()
dict_keys(["中国", "美国", "法国"])
>>> d.values()
dict_values(["北京", "华盛顿", "巴黎"])
>>> d = {"中国": "北京", "美国": "华盛顿", "法国": "巴黎"}
>>> d.get("中国", "伊斯兰堡")
"北京"
>>> d.get("巴基斯坦", "伊斯兰堡")
"伊斯兰堡"
>>> d.popitem()
("美国", "华盛顿")
3、字典类型应用场景
映射的表达
-映射无处不在,键值对无处不在
-例如:统计数据出现的次数,数据是键,次数是值
-最主要作用:表达键值对数据,进而操作他们
元素遍历
for k in d :
<语句块>
6.5 模块5:jieba库的使用
1、jieba库概述
jieba库是优秀的中文分词第三方库
-中文文本需要通过分词获得单个的词语
-jieba是优秀的中文分词第三方库,需额外安装
-jieba库提供三种分词模式,最简单只需要掌握一个函数
2、jieba库的安装
(cmd命令行)pip install jieba
3、jieba分词的原理
jieba分词依靠中文词库
-利用一个中文词库,确定汉字之间的关联概率
-汉字间概率大的组成词组,形成分词结果
-除了分词,用户还可以添加自定义的词组
4、jieba分词的三种模式
精确模式、全模式、搜索引擎模式
-精确模式:把文本精确的切分开,不存在冗余单词
-全模式:把文本中所有可能的词语都扫描出来,有冗余
-搜索引擎模式:在精确模式基础上,对长词再次切分
jieba库常用函数
6.6 实例10:文本词频统计
1、问题分析
文本词频统计
-需求:一篇文章,出现了哪些词?哪些词出现的最多?
-英文文本:Hamet
2、哈姆雷特
#CalHamletV1.py
def getText():
txt = open("hamlet.txt", "r").read()
txt = txt.lower()
for ch in '|"#$%&()*+,-./:;<=>?@[\\]^_‘{|}~':
txt = txt.replace(ch, " ")
return txt
hamletTxT = getText()
words = hamletTxT.split()
counts = {}
for word in words:
counts[word] = counts.get(word, 0) + 1
items = list(counts.items())
items.sort(key=lambda x:x[1], reverse=True)
for i in range(10):
word, count = items[i]
print("{0:<10}{1:>5}".format(word, count))
3、《三国演义》人物出场统计
《三国演义》词频统计
#CalThreeKingdomsV1.py
import jieba
txt = open("threekongdoms.txt", "r", encoding="utf-8").read()
words = jieba.lcut(txt)
counts = {}
for word in words:
if len(word) == 1:
continue
else:
counts[word] = counts.get(word, 0) + 1
items = list(counts.items())
items.sort(key=lambda x:x[1], reverse=True)
for i in range(15):
word, count = items[i]
print("{0:<10}{1:>5}".format(word, count))
将词频与任务相关联,面向问题
#CalThreeKingdomsV2.py
import jieba
txt = open("threekongdoms.txt", "r", encoding="utf-8").read()
excludes = {"将军", "却说", "荆州", "二人", "不可", "不能", "如此"} #将确定不是人名但又排序靠前的列入
words = jieba.lcut(txt)
counts = {}
for word in words:
if len(word) == 1:
continue
elif word == "诸葛亮" or word == "孔明曰":
rword = "孔明"
elif word == "关公" or word == "云长":
rword = "关羽"
elif word == "玄德" or word == "玄德曰":
rword = "刘备"
elif word == "孟德" or word == "丞相":
rword = "曹操"
else:
rword = word
counts[rword] = counts.get(word, 0) + 1
for word in exludes:
del counts[word]
items = list(counts.items())
items.sort(key=lambda x:x[1], reverse=True)
for i in range(10):
word, count = items[i]
print("{0:<10}{1:>5}".format(word, count))
再把后面不是人名的词加入到排除词库中,进一步优化程序,得到最终的《三国演义》任务出场TOP20
4、文本词频统计举一反三
应用问题的扩展
-《红楼梦》、《西游记》、《水浒传》…
-政府工作报告、科研论文、新闻报道…
-进一步还可以制作词云