GCC的-wl,-rpath=<link_path>参数

本文介绍了使用GCC编译动态链接库时遇到的问题及解决方法。主要探讨了两种解决动态链接库加载失败的方式:一是通过-Wl,-rpath参数指定链接库路径;二是将链接库目录添加到/etc/ld.so.conf并使用ldconfig更新。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用GCC编译动态链接库的项目时,在其他目录下执行很可以出现找不到动态链接库的问题。

这种情况多发生在动态链接库是自己开发的情况下,原因就是程序运行时找不到去何处加载动态链接库。

可能会说在编译时指定了链接的目录啊!编译时指定的 -L的目录,只是在程序链接成可执行文件时使用的。程序执行时动态链接库加载不到动态链接库。


解决办法有两种,第一程序链接时指定链接库的位置,就是使用-wl,-rpath=<link_path>参数,<link_path>就是链接库的路径。如:

gcc -o foo foo.c -L. -lfoo -Wl,-rpath=./

上面就是指定了链接的位置在当前目录,这种情况只有在当前目录执行./foo时,才是可以正确使用的。一般情况我们使用如下格式:

gcc -o foo foo.c -L$(prefix)/lib -lfoo -Wl,-rpath=$(prefix)/lib


第二种方式就是,将链接库的目录添加到/etc/ld.so.conf文件中或者添加到/etc/ld.so.conf.d/*.conf中,然后使用ldconfig进行更新,进行动态链接库的运行时动态绑定。如:

添加文件/etc/ld.so.conf.d/foo.conf,内容如下:

/usr/local/lib
然后执行如下命令:

# ldconfig

就可以正常的运行了。



参考文章:https://gcc.gnu.org/ml/gcc-help/2005-12/msg00017.html

``` cc := g++ name := pro workdir := workspace srcdir := src objdir := objs stdcpp := c++11 cuda_home := /datav/software/anaconda3/lib/python3.9/site-packages/trtpy/trt8cuda112cudnn8 syslib := /datav/software/anaconda3/lib/python3.9/site-packages/trtpy/lib cpp_pkg := /datav/software/anaconda3/lib/python3.9/site-packages/trtpy/cpp-packages cuda_arch := nvcc := $(cuda_home)/bin/nvcc -ccbin=$(cc) # 定义cpp的路径查找和依赖项mk文件 cpp_srcs := $(shell find $(srcdir) -name "*.cpp") cpp_objs := $(cpp_srcs:.cpp=.cpp.o) cpp_objs := $(cpp_objs:$(srcdir)/%=$(objdir)/%) cpp_mk := $(cpp_objs:.cpp.o=.cpp.mk) # 定义cu文件的路径查找和依赖项mk文件 cu_srcs := $(shell find $(srcdir) -name "*.cu") cu_objs := $(cu_srcs:.cu=.cu.o) cu_objs := $(cu_objs:$(srcdir)/%=$(objdir)/%) cu_mk := $(cu_objs:.cu.o=.cu.mk) # 定义opencv和cuda需要用到的库文件 link_cuda := cudart cudnn link_trtpro := link_tensorRT := nvinfer nvinfer_plugin link_opencv := link_sys := stdc++ dl protobuf link_librarys := $(link_cuda) $(link_tensorRT) $(link_sys) $(link_opencv) # 定义头文件路径,请注意斜杠后边不能有空格 # 只需要写路径,不需要写-I include_paths := src \ $(cuda_home)/include/cuda \ $(cuda_home)/include/tensorRT \ $(cpp_pkg)/opencv4.2/include \ $(cuda_home)/include/protobuf # 定义库文件路径,只需要写路径,不需要写-L library_paths := $(cuda_home)/lib64 $(syslib) $(cpp_pkg)/opencv4.2/lib # 把library path给拼接为一个字符串,例如a b c => a:b:c # 然后使得LD_LIBRARY_PATH=a:b:c empty := library_path_export := $(subst $(empty) $(empty),:,$(library_paths)) # 把库路径和头文件路径拼接起来成一个,批量自动加-I、-L、-l run_paths := $(foreach item,$(library_paths),-Wl,-rpath=$(item)) include_paths := $(foreach item,$(include_paths),-I$(item)) library_paths := $(foreach item,$(library_paths),-L$(item)) link_librarys := $(foreach item,$(link_librarys),-l$(item)) # 如果是其他显卡,请修改-gencode=arch=compute_75,code=sm_75为对应显卡的能力 # 显卡对应的号码参考这里:https://developer.nvidia.com/zh-cn/cuda-gpus#compute # 如果是 jetson nano,提示找不到-m64指令,请删掉 -m64选项。不影响结果 cpp_compile_flags := -std=$(stdcpp) -w -g -O0 -m64 -fPIC -fopenmp -pthread cu_compile_flags := -std=$(stdcpp) -w -g -O0 -m64 $(cuda_arch) -Xcompiler "$(cpp_compile_flags)" link_flags := -pthread -fopenmp -Wl,-rpath='$$ORIGIN' cpp_compile_flags += $(include_paths) cu_compile_flags += $(include_paths) link_flags += $(library_paths) $(link_librarys) $(run_paths) # 如果头文件修改了,这里的指令可以让他自动编译依赖的cpp或者cu文件 ifneq ($(MAKECMDGOALS), clean) -include $(cpp_mk) $(cu_mk) endif $(name) : $(workdir)/$(name) all : $(name) run : $(name) @cd $(workdir) && ./$(name) $(run_args) $(workdir)/$(name) : $(cpp_objs) $(cu_objs) @echo Link $@ @mkdir -p $(dir $@) @$(cc) $^ -o $@ $(link_flags) $(objdir)/%.cpp.o : $(srcdir)/%.cpp @echo Compile CXX $< @mkdir -p $(dir $@) @$(cc) -c $< -o $@ $(cpp_compile_flags) $(objdir)/%.cu.o : $(srcdir)/%.cu @echo Compile CUDA $< @mkdir -p $(dir $@) @$(nvcc) -c $< -o $@ $(cu_compile_flags) # 编译cpp依赖项,生成mk文件 $(objdir)/%.cpp.mk : $(srcdir)/%.cpp @echo Compile depends C++ $< @mkdir -p $(dir $@) @$(cc) -M $< -MF $@ -MT $(@:.cpp.mk=.cpp.o) $(cpp_compile_flags) # 编译cu文件的依赖项,生成cumk文件 $(objdir)/%.cu.mk : $(srcdir)/%.cu @echo Compile depends CUDA $< @mkdir -p $(dir $@) @$(nvcc) -M $< -MF $@ -MT $(@:.cu.mk=.cu.o) $(cu_compile_flags) # 定义清理指令 clean : @rm -rf $(objdir) $(workdir)/$(name) $(workdir)/*.trtmodel $(workdir)/demo.onnx # 防止符号被当做文件 .PHONY : clean run $(name) # 导出依赖库路径,使得能够运行起来 export LD_LIBRARY_PATH:=$(library_path_export)```run_paths := $(foreach item,$(library_paths),-Wl,-rpath=$(item)) include_paths := $(foreach item,$(include_paths),-I$(item)) library_paths := $(foreach item,$(library_paths),-L$(item)) link_librarys := $(foreach item,$(link_librarys),-l$(item))解释一下什么意思,具体一些
03-08
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

枫竹梦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值