锦标赛选择算法及 matlab 实现

本文介绍了锦标赛选择(TournamentSelection)策略在遗传算法中的使用,它通过随机选取多个个体并选择适应度较高的个体进入下一代。二元锦标赛选择是其中的一种,每次比较两个个体的适应度。这种方法具有较低的计算复杂度,避免陷入局部最优,并且易于并行化。在给定的例子中,通过比较个体适应度,发现第7个个体的适应度最高,被选择次数最多。这表明锦标赛选择与轮盘赌选择等其他策略有所不同。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

锦标赛选择(Tournament Selection)

每次从种群中取一定数量(n)的个体(放回抽样),选择其中适应度较好的进入子代种群。重复该操作直到种群规模到和原来的种群规模一样。几元锦标赛就代表一次性从总体中抽取几个个体,然后从中选择最优的个体保留到下一代种群。

步骤如下:

  1. 确定每次选择的个体数量N。(二元锦标赛选择即选择2个个体)

  2. 从种群中随机选择N个个体(每个个体被选择的概率相同) ,根据每个个体的适应度值,选择其中适应度值最好的个体进入下一代种群。

  3. 重复步骤(2)多次(重复次数为种群的大小),直到新的种群规模达到原来的种群规模。

优点:

  1. 更小的复杂度,无需对所有适应度进行排序处理
  2. 不易陷入局部最优点
  3. 易于并行化处理

代码如下:

% Tournament 本次使用二元锦标赛选择,即每次选择两个个体
clear
clc

% 设置种群大小为10,其适应度值Fit,使用随机函数生成,取值范围[0,1]
Fit = rand(10,1)
% 选择的个体索引
Sel = [];

for i = 1:length(Fit)

	% 随机选择两个个体
    temp = randi(10,1,2);    
    
    % 比较这两个个体的适应度值大小,选择大的
    if Fit(temp(1)) >=
### 二元锦标赛选择法概念与实现 #### 概念说明 二元锦标赛选择法是一种常用的进化算法中的选择策略,其核心思想是从当前种群中随机抽取若干个体(通常为两个),通过比较它们的适应度值来决定哪个个体能够进入下一代种群。这种方法简单高效,在保持种群多样性的同时还能有效促进优秀个体的选择[^2]。 具体而言,该方法的操作流程如下: 1. 随机从种群中选取两个个体。 2. 对这两个个体计算各自的适应度值。 3. 将具有更高适应度值的个体保留至下一代种群中。 4. 重复上述过程直至新一代种群规模达到预定目标。 此方法的优点在于其实现简便且能快速筛选出较优解,同时由于每次仅需对比少量个体,因此时间复杂度较低。 #### MATLAB 实现示例 以下是基于 MATLAB 的二元锦标赛选择法的一个典型实现: ```matlab function selectedPopulation = binaryTournamentSelection(population, fitnessValues, populationSize) % 输入参数解释: % population: 当前种群矩阵 (每一行代表一个个体) % fitnessValues: 种群对应个体的适应度向量 % populationSize: 种群大小 newPopulation = []; for i = 1:populationSize % 步骤一:从种群中随机选出两个个体索引 indices = randperm(length(fitnessValues), 2); % 获取对应的适应度值 individual1Fitness = fitnessValues(indices(1)); individual2Fitness = fitnessValues(indices(2)); % 步骤二:比较并选择适应度更高的个体加入新种群 if individual1Fitness >= individual2Fitness newPopulation = [newPopulation; population(indices(1),:)]; else newPopulation = [newPopulation; population(indices(2),:)]; end end % 返回经过选择的新一代种群 selectedPopulation = newPopulation; end ``` 以上代码实现了完整的二元锦标赛选择逻辑,其中 `randperm` 函数用于生成不重复的随机数序列以确保公平性;而循环结构则保证了最终生成的新种群规模等于原种群规模。 #### 应用场景 二元锦标赛选择法广泛应用于各种智能优化算法之中,例如 NSGA-II 多目标优化算法、遗传算法等。它不仅适用于单一目标优化问题,也能够在多目标优化情境下发挥重要作用,帮助维持种群多样性和收敛速度之间的平衡。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值